Способы получения металлов и сплавов. Металлические материалы Электролитический способ получения металлов

Большинство металлов находятся в природе в виде соединений с другими элементами, и только немногие встречаются в чистом виде, например: серебро, золото, медь, свинец. Минералы (природные химические соединения) и горные породы, содержащие соединения металлов называются рудами . Руды содержат оксиды, сульфиды, карбонаты, галогениды металлов. Получение металлов из руд составляет задачу металлургии.

Металлургические процессы,протекающие при высоких температурах, называются пирметаллургическими. Таким путем получают чугун и сталь, используя вещества-восстановители.

Важнейшими восстановителями являются углерод и монооксид углерода. Для металлов, не восстанавливаемых ни углеродом, ни СО, используют более сильные восстановители: водород, кремний и некоторые достаточно активные металлы – магний, алюминий. Методы, в которых в качестве восстановителей используют металлы, называются металлотермией (иногда в названии присутствует металл-восстановитель, например: алюмотермия).

Примеры процессов c использованием различных восстановителей.

Fe 2 O 3 + 3CO = 3Fe + 3CO 2

Иногда, при переработке сульфидных руд, проводят первоначальный обжиг в специальных печах – окисляют руду до оксидов, и только затем восстанавливают до металла:

2ZnS + O 2 = 2ZnO + 2SO 2 ZnO + C = Zn + CO

Такие металлы, как хром, марганец, получают, главным образом, алюмотермией, а также восстановлением кремнием:

Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3

Процесс алюмотермии протекает с большим выделением теплоты.

Процессы извлечения металлов из руд с помощью водных растворов называются гидрометаллургическими. Таким путем получают золото. Золотосодержащую породу обрабатывают раствором NaCN, и золото переходит в раствор в виде комплекса - . Затем используют цинк в качестве восстановителя:

2 - + Zn = 2- + Au

Третьим способом получения металлов является электролиз растворов или расплавов. Электролизом раствора оксида алюминия в расплавленном криолите получают алюминий; электролизом расплава MgCl 2 получают магний.

Получение металлов высокой чистоты.

В ряде отраслей техники требуется получение металлов высокой степени чистоты. Например, для ядерных реакторов нужен химически чистый цирконий без примеси гафния. Для электронной промышленности необходим германий, в котором не должно быть более одного атома фосфора, мышьяка или сурьмы на миллион атомов германия. Исследование металлов в чистом состоянии показало, что некогда существовавшие представления об их свойствах являются ошибочными. Так, например, чистые титан, хром оказались настолько пластичными, что их можно ковать, прокатывать в тонкие листы и пр. Алюминий высокой чистоты мягок, как свинец, а его электропроводимость значительно выше.

Чистые металлы можно получить электролизом, но степень их чистоты недостаточно высокая, поэтому для получения металлов ОСЧ – особой чистоты, используют специальные методы:

Переплавка в вакууме (получают ОСЧ литий, щелочно-земельные металлы, хром, марганец, бериллий);

Разложение летучих соединений на раскаленной поверхности (получают ОСЧ титан, цирконий, хром, тантал, ниобий, кремний и др.);

Использование так называемой «зонной плавки» (получают германий, кремний, олово, алюминий, висмут и галлий).

Зонная плавка основана на различной растворимости примесей в твердой и жидкой фазах очищаемого металла. Лодочку или тигель специальной формы со слитком металла передвигают с очень медленной скоростью (несколько мм в час) через печь При этом происходит расплавление небольшого участка (зоны) металла. По мере продвижения тигля зона жидкого металла перемещается от одного конца слитка к другому. Примеси, содержащиеся в металле, собираются в зоне плавления, перемещаются вместе с ней и после окончания плавки оказываются в конце слитка. Многократное повторение операции дает возможность получить металл высокой степени чистоты.

Дополнения к теме «Физико-хмический анализ»

Многочисленные работы Ник. Семен. Курнакова по выяснению природы металлических сплавов внесли ясность в понимание процессов, происходящих при затвердевании сплавов. В частности, при изучении сплавов были открыты химические соединения, состав которых может меняться в широких пределах. Эти соединения, состав которых может меняться в широких пределах, Курнаков назвал бертоллидами, по имени французского химика Бертолле, допустившего их существование. Тогда как соединения постоянного состава (подчиняющиеся закону постоянства состава), были названы дальтониды. Стехиометрическое соотношение компонентов, образующих химическое соединение постоянного состава соблюдается только в парообразном состоянии, в молекулярных кристаллах и жидкостях. Исходя из вышесказанного, можно дать более развернутое определение, что такое химическое соединение. Химическое соединение – это вещество постоянного или переменного состава, образованное из атомов одного или нескольких химических элементов, с качественно своеобразным химическим и кристаллохимическим строением.

При сплавлении металлов может образоваться твердый раствор или химическое соединение переменного состава. В отличие от твердых растворов (общее между растворами и хим. соединениями – однородность и наличие теплового эффекта при образовании), соединение переменного состава характеризуется только ему присущим кристаллохимическим строением, отличающимся от строения исходных компонентов.

Условием образования

В природе химические элементы металлы могут находиться как в свободном виде (в виде простого вещества), так и в связанном (входить в состав сложных веществ). В связи с этим различаются спосбобы и методы получения металло, рассмотрим основные из них.

Химически малоактивные металлы, стоящие в ряду напряжений после водорода (например, медь, ртуть, золото, серебро, платина) встречаются на Земле и в свободном, и в связанном виде. Металлы, стоящие в ряду напряжений до водорода в природных условиях, как правило, содержатся в связанном виде. Содержащиеся в природе соединения металлов называются иначе минералами.

Скопление металлсодержащих минералов, входящих в состав горных и осадочных пород, пригодные для промышленной переработки называются рудами .

Если металл в природных условиях находится в свободном виде, то его получение сводится лишь к разделению его с пустой породой. При этом используются известные физические методы разделения смесей.

В соединениях металлы находятся в окисленном виде и поэтому для выделения их из руд необходимо использовать процессы восстановления. Извлечением металлов из руд занимается металлургическая промышленность или металлургия. При этом в зависимости от применяемого способа восстановления металлов из соединений различают пирометаллургию, гидрометаллургию и электрометаллургию.

Пирометаллургия охватывает способы получения металлов из руд с помощью реакций восстановления, проводимых при высокой температуре.

Сырьем для получения металлов главным образом служат руды, содержащие их оксиды. В качестве восстановителя применяют уголь или СО (карботермия ), активные металлы (металлотермия ), H 2 (водородотермия ) и Si (кремнийтермия ).

ZnO + C = Zn + CO

Fe 2 O 3 + 3CO = 2Fe + 3CO 2

Cr 2 O 3 + 2Al = 2Cr + Al 2 O 3

Ca + 2CsCl = CaCl 2 + 2Cs

TiCl 4 + 2Mg = Ti + 2MgCl 2

MoO 3 + 3H 2 = Mo + 3H 2 O

WO 3 + 3H 2 = W + 3H 2 O

Углерод, применяемый в виде кокса, при соответствующих высоких температурах может восстановить практически любой металл, даже такой активный, как щелочной, щелочноземельный, магний или алюминий. Однако на практике эти металлы методом карботермии не получают, так как они с избытком углерода образуют прочные химические соединения – карбиды.

С помощью карботермии обычно получают такие металлы, как Fe, Cu, Zn, Co, Ni, Mn, Cr. Карбиды этих металлов непрочны, при нагревании легко разлагаются.

Углерод(II)-оксид как восстановитель более эффективен, чем кокс, поскольку находится в газообразном состоянии и способен обеспечивать большую площадь соприкосновения реагирующих веществ.

С помощью водородотермии получаютследующин металлы - молибден, вольфрам, рений. Достоинством этого метода является то, что при этом образуются металлы высокой чистоты.

В металлотермии одним из наиболее активных восстановителей является алюминий, что объясняется высокой энтальпией образования его оксида

Н(Al 2 O 3) = –1700 кДж/моль. Алюминий применяют для получения таких металлов, как хром, железо, кобальт, никель.

Его можно использовать даже для получения щелочных и щелочноземельных металлов, так как энтальпии образования их оксидов значительно ниже Н(Al 2 O 3). Но, как правило, эти металлы получают другими способами, так как их оксиды с Al 2 O 3 легко образуют алюминаты:

3CaO + 2Al = Al 2 O 3 +3Ca

CaO + Al 2 O 3 = Ca(AlO 2) 2

суммарное уравнение

4 CaO + 2Al = Ca(AlO 2) 2 + 3Ca

Если в руде находится сульфид металла, то его переводят в оксид путем окислительного обжига:

2ZnS + 3O 2 = 2ZnO + 2SO 2

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

Карбонатные руды с этой же целью также предварительно подвергают прокаливанию:

ZnCO 3 = ZnO + CO 2

FeCO 3 = FeO + CO 2

Гидрометаллургия охватывает способы получения металлов из растворов их солей. При этом соединение металла, входящее в состав руды или исходного сырья, сначала переводят в раствор с помощью подходящих реагентов, а затем данный металл извлекают из этого раствора химическим путем.

Так, например, при обработке разбавленной серной кислотой медной руды, содержащей медь(II)-оксид, медь переходит в раствор в виде сульфата:

CuO + H 2 SO 4 = CuSO 4 + H 2 O

Затем медь извлекают из раствора вытеснением с помощью порошка железа:

CuSO 4 + Fe = Cu + FeSO 4

Аналогичным методом получают Au, Ag, Zn, Cd, Mo и другие металлы.

4Au + O 2 + 8NaCN + 2H 2 O = 4Na + 4NaOH

2Na + Zn = Na 2 + 2Au

Электрометаллургия охватывает способы получения металлов путем электролиза растворов или расплавов их соединений:

2Al 2 O 3 = 4Al + 3O 2

2NaCl = 2Na + Cl 2

2KCl = 2K + Cl 2

Таким способом получают наиболее активные металлы, которые при восстановлении водородом, углем, алюминием образуют с этими веществами химические соединения.

Электролизом растворов солей получают малоактивные металлы, которые стоят в ряду напряжений после водорода:

СuCl 2 = Cu + Cl 2

Электролиз растворов используют для получения малоактивных металлов высокой степени чистоты.

Навигация

  • Решение комбинированных задач на основе количественных характеристик вещества
  • Решение задач. Закон постоянства состава веществ. Вычисления с использованием понятий «молярная масса» и «химическое количество» вещества
  • Решение расчетных задач на основе количественных характеристик вещества и стехиометрических законов
  • Решение расчетных задач на основе законов газового состояния вещества
  • Электронная конфигурация атомов. Строение электронных оболочек атомов первых трех периодов

Существует несколько способов получения металлов в промышленности. Их применение зависит от химической активности получаемого элемента и используемого сырья. Некоторые металлы встречаются в природе в чистом виде, другие же требуют сложных технологических процедур для их выделения. Добыча одних элементов занимает несколько часов, другие же требуют многолетней обработки в особых условиях. Общие способы получения металлов можно разделить на следующие категории: восстановление, обжиг, электролиз, разложение.

Есть также специальные методы получения редчайших элементов, которые подразумевают создание специальных условий в среде обработки. Сюда может входить ионная декристаллизация структурной решетки или же наоборот, проведение контролируемого процесса поликристаллизации, которые позволяют получать определенный изотоп, радиоактивное облучение и другие нестандартные процедуры воздействия. Они используются довольно редко ввиду высокой дороговизны и отсутствия практического применения выделенных элементов. Поэтому остановимся подробнее на основных промышленных способах получения металлов. Они довольно разнообразны, но все основаны на использовании химических или физических свойств определенных веществ.

Основные способы получения металлов

Одним из основных способов получения металлов является их восстановление из оксидов. Это одно из самых распространенных соединений металлов, которые встречаются в природе. Процесс восстановления протекает в доменных печах под воздействием высоких температур и при участии металлических или неметаллических восстановителей. Из металлов используют элементы с высокой химической активностью, например, кальций, магний, алюминий.

Среди неметаллических веществ применяются оксид углерода, водород и коксующиеся угли. Суть процедуры восстановления заключается в том, что более активный химический элемент или соединение вытесняет металл из оксида и вступает в реакцию с кислородом. Таким образом, на выходе образуется новый оксид и чистый металл. Это самый распространенный способ получения металлов в современной металлургии.

Обжиг является лишь промежуточным методом получения чистого элемента. Он предполагает сжигание сульфида металла в кислородной среде, в результате чего образуется оксид, который затем подвергается процедуре восстановления. Этот метод также применяется довольно часто, так как сульфидные соединения широко распространены в природе. Прямое получение чистого металла из его соединений серой не используют по причине сложности и дороговизны технологического процесса. Гораздо проще и быстрее провести двойную обработку, как было указано выше.

Электролиз, как способ получения металлов подразумевает пропускание тока через расплав металлического соединения. В результате процедуры чистый металл оседает на катоде, а остальные вещества - на аноде. Такой способ применим к солям металлов. Но он не является универсальным для всех элементов. Подходит способ для получения щелочных металлов и алюминия. Это связано с их высокой химической активностью, которая под воздействием электрического тока позволяет с легкостью нарушать установленные в соединениях связи. Иногда электролитический способ получения металлов применяют к щелочноземельным элементам, но они уже не так хорошо поддаются данной обработке, а некоторые и вовсе не разрывают полностью связь с неметаллом.

Последний способ - разложение происходит под воздействием высоких температур, которые позволяют разорвать связи между элементами на молекулярном уровне. Для каждого соединения потребуется свой температурный уровень, но в целом метод не содержит каких-либо хитростей или особенностей. Единственный момент: полученный в результате обработки металл, может потребовать проведения процедуры спекания. Но этот способ позволяет получить практически на 100% чистый продукт, так как для его проведения не применяются катализаторы и другие химические вещества. В металлургии способы получения металлов называют пирометаллургическим, гидрометаллургическим, электрометаллургическим и термическим разложением. Это четыре приведенных выше способа, только названные не по химической, а по промышленной терминологии.

Как получают металл в промышленности

Способ производства металла во многом зависит от его распространения в недрах земли. Добыча в основном происходит в виде руды с определенным процентным содержанием элементов. Богатые руды могут содержать до 90% металла. Бедные руды, которые содержат всего 20-30% вещества, перед обработкой отправляют на обогатительную фабрику.

В чистом виде в природе встречаются только благородные металлы, которые добывают в виде самородков различного размера. Химически активные элементы встречаются либо в виде простых солей, либо в виде полиэлементных соединений, которые имеют очень сложное химическое строение, но в основном достаточно просто разлагаются на составляющие при определенном воздействии. Металлы средней и малой активности в природных условиях образуют оксиды и сульфиды. Реже их можно встретить в составе сложных кислотно-металлических соединений.

Перед получением чистого металла зачастую производится одна или несколько процедур разложения сложных веществ на более простые. Гораздо проще выделять один продукт из двухэлементного соединения, чем из многоэлементного сложного образования. К тому же технологический процесс требует тщательного контроля, который очень сложно обеспечить, когда речь идет о большом количестве примесей с разными свойствами.

Что касается экологической стороны вопроса, то самым чистым можно признать электрохимический способ получения металлов, так как при его проведении в атмосферу не выделяется никаких веществ. В остальном же металлургия является одним из самых вредных для природы производств, поэтому в современном мире уделяется большое внимание проблеме создания безотходного оборудования.

Уже сейчас многие заводы отказались от использования мартеновских печей в пользу более современных электрических моделей. Они потребляют гораздо больше энергии, но не выбрасывают в атмосферу продукты сгорания топлива. Очень важной является и вторичная переработка металлов. Для этого во всех странах оборудованы специальные пункты приема, в которых можно сдавать вышедшие из эксплуатации детали из черных и цветных металлов, которые затем отправятся на переработку. В будущем из них изготовят новую продукцию, которую можно будет использовать в соответствии с назначением.

Как получают металлы?

Чистые металлы из руд

За редким исключением металлы встречаются в природе не в чистом, самородном состоянии, а в виде химических соединений. Эти соединения в ходе истории Земли возникли благодаря реакциям металлов с другими химическими элементами. В большинстве случаев руды представляют собой оксиды, сульфиды или карбонаты (табл. 6). Металлсодержащие полезные ископаемые в земной коре содержат одновременно и нежелательные минеральные составные части, безрудную или жильную породу. Поэтому методами флотации, измельчения, грохочения и агломерации руды должны быть сначала приведены к состоянию, удобному для дальнейшей металлургической переработки.

Чтобы добыть чистые металлы из руд, их подвергают соответствующему химическому разложению. В качестве примера возьмем оксид, из которого путем восстановления вначале получают черновой загрязненный материал, который далее путем рафинирования перерабатывают до чистого или особо чистого металла.

На металлургических производствах либо неокисленные руды путем нагрева в присутствии кислорода воздуха и обжига переводят в оксиды металлов, либо необходимые соединения металлов удаляются из руды выщелачиванием с помощью подходящих растворителей, таких как вода, разбавленные кислоты, щелочи, растворы солей (гидрометаллургия).

Далее оксиды металлов можно восстановить веществом, обладающим большим сродством к кислороду, чем получаемый материал. К ним относятся, например, углерод или его оксид при высоких температурах (карботермический метод), алюминий (алюмотермия) или кремний (кремнетермия). Эти способы объединены под общим понятием пирометаллургии.

В электрометаллургии металл может быть получен электролитически из расплава или водного раствора его соединения. Известно также и термическое разложение соединений металлов. Черновой металл, образующийся вначале во всех вышеназванных методах, очищается затем путем избирательного окисления, электролитическими методами, выпариванием и повторной конденсацией или зонной плавкой.

На основании этих принципов были разработаны самые разнообразные технологические варианты получения металлов. Мы рассмотрим в дальнейшем те из них, которые применяются для производства наиболее важных металлических материалов.

Чугун-продукт доменной печи

Для производства чугуна в настоящее время служат преимущественно оксидные руды в виде агломерата или кусков, которые восстанавливают в доменных печах с помощью углерода или его оксида. Доменная печь (24) имеет высоту до 40 м; в ее самом широком месте, распаре, диаметр достигает от 3,5 до 10 м. С колошниковой площадки в печь послойно засыпают металлическое сырье с добавками (шихту) и кокс. Кокс служит для протекания химической реакции восстановления и в то же время помогает создать необходимую температуру, которая непосредственно в зоне реакции, в заплечиках, достигает почти 2000 °С. Подаваемый в печь воздух предварительно нагревается в воздухоподогревателях (кауперах) до 800 °С, поступает по кольцевому трубопроводу через дюзы (фурмы) в доменную печь и стремится вверх навстречу потоку металлического сырья и кокса. Загрузочная масса постоянно пополняется из колошника. При восстановлении в ходе металлургического процесса возникают жидкое железо, которое науглероживается присутствующим коксом, и шлаки. Жидкие чугун и шлаки собираются в горне, причем, ввиду своей небольшой плотности, шлак плавает на металле. Шлаки через шлаковые летки постоянно удаляют из печи, а чугун периодически, через 2-4 часа, отбирают через летку в нижней части печи.

Доменная печь работает непрерывно 10-15 лет. Из нее получают чугун, содержащий 3,543% С, 1-3% Si, 0,5-1,5% Мп, 0,05-0,1% S и 0,05-0,1% Р, а также шлаки. Этот побочный продукт используют при производстве гравия, мелкого щебня, материала для мостовых, цемента, шлаковой ваты. Колошниковый газ, который через колосник выходит нагретый до 300-400 °С, поступает на обогрев воздухоподогревателей. Доменный чугун поступает либо в чугуносмеситель и перерабатывается дальше в жидком виде на сталеплавильных заводах, либо в литьевую машину, в которой получают твердые чугунные плашки, поступающие далее на сталелитейные заводы или на литейное производство.

От мартеновского способа к прямому восстановлению

Сталью называют железоуглеродные сплавы с содержанием углерода менее 2%. В чугуне содержание углерода составляет более 2,5%.

Сущность получения стали состоит в том, что путем избирательного окисления из доменного чугуна удаляют часть углерода и другие нежелательные элементы. Важным процессом в производстве стали поэтому является так называемая переделка чугуна. Под этим понятием объединены все реакции окисления углерода и других спутников железа (кремний, марганец, фосфор, сера), происходящие внутри металлургической печи в полученном там или введенном расплаве доменного чугуна и металлолома. К необходимому для этого воздуху примешиваются для окисления топочные газы и кислород.

Все важнейшие в настоящее время способы производства стали можно классифицировать так:

Способы производства стали

Прямое восстановление

Горновые способы

Конвертерный способ

При мартеновском способе металлическая шихта (чугун и металлический лом) в твердом или жидком виде находится в лоткообразном очаге, вдоль которого бьет длинный нагретый до 1900 °С факел. Это факел образуется при сгорании генераторного газа в потоке подогретого воздуха (принцип регенеративной топки). Мартеновские печи работают многие месяцы без перерывов. Их вместимость составляет от 10 до 600 т стали, которую в зависимости от размеров печи и особенностей технологии выпускают из печи в виде готового расплава через 5-20 часов. Необходимый для переделки чугуна в сталь кислород присутствует в печи в химически связанном состоянии в виде оксида углерода или оксидов металлов, содержащихся в руде.

Производство стали с помощью электроэнергии происходит чаще всего в электродуговых и реже в индукционных печах. Здесь металлическая засыпка тоже находится в плоском очаге. Между тремя вводимыми сверху графитовыми электродами и металлической шихтой возникают электрические дуги. Электродуговые печи эксплуатируются многие месяцы, а их вместимость колеблется от 5 до 100 т стали, для изготовления которой требуются от 4 до 10 часов.

В конвертере (25) металлическая шихта постоянно находится в жидком состоянии. Кислород поступает либо из воздуха, который продувается снизу через расплав (нижнее дутье), либо в виде чистого кислорода через небольшую форсунку нагнетается поверх материала (верхнее, или кислородное дутье). Вследствие очень интенсивной окислительной реакции необходимая теплота выделяется в ходе процесса в конвертере, так что отпадает необходимость в подводе дополнительного горючего. Вместимость таких конвертеров лежит в пределах от 5 до 100 т, а время изготовления стали составляет от 20 до 60 минут.

Большая часть нелегированной стали производится сейчас мартеновским способом. При более раннем конвертерном способе (методы Томаса и Бессемера) получается также нелегированная сталь, которая, однако, обогащена азотом и потому имеет невысокое качество. Современные способы воздушного или кислородного дутья позволяют получать стали, не уступающие по качеству мартеновским. Методы с использованием электричества дают возможность производить нелегированные стали высшего качества, а также низко- и высоколегированные. Приложение 3 позволяет познакомиться с классическими и современными способами производства стали.

Готовую сталь большей частью отливают в виде слитков круглого, квадратного или прямоугольного сечения, из которых затем на прокатном стане получают заготовки (листы, штанги, профили). Небольшую часть стали перерабатывают непосредственно в литейных цехах в фасонное стальное литье (например, детали машин).

Новейшим направлением в производстве стали является прямое восстановление приготовленной железной руды газом-восстановителем, минуя доменные процессы. При этом возникает губчатое железо, состав которого в отличие от доменного чугуна очень близок к стали.

В ГДР нелегированные стали производятся в основном мартеновским способом, а при получении легированных применяются электродуговые печи. Старый конвертерный метод практически потерял свое значение. Прогрессивные методы воздушного и кислородного дутья уже нашли свое применение в ГДР и в перспективе станут играть при производстве стали все большую роль.

Получение алюминия электролизом

Используемые в промышленности цветные металлы, такие как алюминий, медь, магний, цинк, свинец, ввиду многообразия руд, содержащих их, получают самыми различными способами. Однако каждый из них основан на одном из перечисленных выше принципов получения металлов. Рассмотрим подробнее электротермию на примере получения алюминия.

Алюминий получают из бокситов-руды, содержащей около 55-65% А12О3, не более 28% Fe2O3 и до 24% SiO2. Измельченный, высушенный и перемолотый боксит превращают в алюминат натрия. Это осуществляется либо воздействием на него едкого натра под давлением в 6-8 раз больше атмосферного (способ Бауера), либо путем спекания с содой во вращающихся трубных печах (способ Левига). Из раствора алюмината можно осадить гидроксид алюминия, который затем в таких же печах при 1300-1400°С превращается в чистый глинозем (А12О3). После растворения полученного таким образом глинозема в соли (криолит) начинается важнейшая стадия процесса получения алюминия, электролиз расплава (26). При этом на дно электролизной ячейки выпадает шлаковый алюминий, из которого путем переплавки получают чистый алюминий (до 99-99,8% А1). Другой специфический способ электролиза приводит к получению сверхчистого алюминия (99,99% А1).

Цель урока: познакомить с природными соединениями металлов и с самородными металлами; дать понятие о рудах и металлургии, рассмотреть такие ее разновидности, как пиро–, гидро–, электрометаллургия, термическое разложение соединений металлов, продемонстрировать лабораторные способы получения металлов и с помощью фрагментов медиалекции ознакомить с промышленным производством металлов.

Оборудование: компьютер, видеопроектор, коллекция “Минералы и горные породы”, прибор для получения газов, лабораторный штатив, пробирки, спиртовка, фарфоровые ступки.

Реактивы: оксид меди(II), соляная кислота концентрированная, цинк гранулированный, термит (смесь порошков алюминия и оксида железа (Ш), раствор сульфата меди и железный гвоздь.

I. Организационный момент. Проверка домашнего задания.

1. Написать уравнения реакций взаимодействия между веществами:

а) Li, Na, Ca, Fe c O 2 , Cl 2 , S, N 2 , C:

б) Na, Ca, Al c H 2 O;

в) Zn c H 2 SO 4 ; Al c HCl;

г) Zn c CuSO 4 ; Al c NaOH; Be c KOH.

2. Расставить коэффициенты, найти окислитель и восстановитель в уравнениях реакций:

Cu + HNO 3 (P) -> Cu (NO 3) 2 + NO + H 2 O

Cu + HNO 3 (K) -> Cu (NO 3) 2 + NO 2 + H 2 O

Na + HNO 3 -> NaNO 3 + N 2 O + H 2 O.

3. Все уравнения реакций учащиеся сверяют с экраном, где спроецированы данные уравнения реакций (фрагмент медиалекции “Общие свойства металлов”). (CD) Обобщение общих химических свойств металлов проводится по схеме “Общие свойства металлов”.

4. Завершим рассмотрение схемы, мы не разобрали нахождение металлов в природе и способы их получения.

II. Природные соединения металлов.

Могут ли металлы находиться в природе в свободном (или самородном) состоянии? Если могут, то, какие это металлы?

Ответ очевиден, это металлы низкой химической активности. Металлы могут встречаться в природе или в виде простого вещества или в виде сложного вещества.

Металлы в природе встречаются в трёх формах: 1) в свободном виде встречаются золото и платина; золото бывает в распыленном состоянии, а иногда собирается в большие массы? самородки. Так в Австралии в 1869 году нашли глыбу золота в сто килограммов весом. Через три года обнаружили там же еще большую глыбу весом около двухсот пятидесяти килограммов. Наши русские самородки много меньше, и самый знаменитый, найденный в 1837 году на Южном Урале, весил всего около тридцати шести килограммов. В середине XVII века в Колумбии испанцы, промывая золото, находили вместе с ним тяжелый серебристый металл. Этот металл казался таким же тяжелым, как и золото, и его нельзя было отделить от золота промывкою. Хотя он и напоминал серебро (по-испански? plata), но был почти нерастворим и упорно не поддавался выплавке; его считали случайной вредной примесью или преднамеренной подделкой драгоценного золота. Поэтому испанское правительство приказывало в начале XVIII столетия выбрасывать этот вредный металл при свидетелях обратно в реку. Месторождения платины находятся и на Урале. Оно представляет собой массив дунита (изверженная горная порода, состоящая из силикатов железа и магния с примесью железняка). В нем содержатся включения самородной платины в виде зерен. 2) в самородном виде и в форме соединений могут находиться в природе серебро, медь, ртуть и олово; 3) все металлы, которые в ряду напряжений находятся до олова, встречаются только в виде соединений.

Чаще всего металлы в природе встречаются в виде солей неорганических кислот: хлоридов? сильвинит КСl NaCl, каменная соль NaCl;

нитратов – чилийская селитра NaNO 3 ;

сульфатов – глауберова соль Na 2 SO 4 ? 10 H 2 O, гипс CaSO 4 2Н 2 О;

карбонатов – мел, мрамор, известняк СаСО 3 , магнезит MgCO 3 , доломит CaCO 3 MgCO 3 ;

сульфидов? серный колчедан FeS 2 , киноварь HgS, цинковая обманка ZnS;

фосфатов – фосфориты, апатиты Ca 3 (PO 4) 2 ;

оксидов – магнитный железняк Fe 3 O 4 , красный железняк Fe 2 O 3 , бурый железняк, содержащий различные гидроксиды железа (III) Fe 2 O 3 Н 2 О.

Ещё в середине II тысячелетия до н. э. в Египте было освоено получение железа из железных руд. Это положило начало железному веку в истории человечества, который пришёл на смену каменному и бронзовому векам. На территории нашей страны начало железного века относят к рубежу II и I тысячелетий до н. э.

Минералы и горные породы, содержащие металлы и их соединения и пригодные для промышленного получения металлов, называются рудами.

Отрасль промышленности, которая занимается получением металлов из руд, называется металлургией. Так же называется и наука о промышленных способах получения металлов из руд.

III. Получение металлов.

Какой основной химический процесс лежит в основе получения металлов?

Большинство металлов встречаются в природе в составе соединений, в которых металлы находятся в положительной степени окисления, значит для того, чтобы их получить, в виде простого вещества, необходимо провести процесс восстановления.

Но прежде чем восстановить природное соединение металла, необходимо перевести его в форму, доступную для переработки, например, оксидную форму с последующим восстановлением металла. На этом основан пирометаллургический способ . Это восстановление металлов из их руд при высоких температурах с помощью восстановителей неметаллических? кокс, оксид углерода (II), водород; металлических? алюминий, магний, кальций и другие металлы. .

Демонстрационный опыт 1. Получение меди из оксида с помощью водорода.

Cu +2 O + H 2 = Cu 0 + H 2 O (водородотермия)

Демонстрационный опыт 2. Получение железа из оксида с помощью алюминия.

Fe +3 2 O 3 +2Al = 2Fe 0 + Al 2 O 3 (алюмотермия)

Для получения железа в промышленности железную руду подвергают магнитному обогащению:3Fe 2 O 3 + H 2 = 2Fe 3 O 4 + H 2 O или 3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 , а затем в вертикальной печи проходит процесс восстановления:

Fe 3 O 4 + 4H 2 = 3Fe + 4H 2 O

Fe 3 O 4 + 4CO = 3Fe + 4CO 2

Просмотр медиалекции. (CD)

Гидрометаллургический способ основан на растворении природного соединения с целью получения раствора соли этого металла и вытеснением данного металла более активным. Например, руда содержит оксид меди и ее растворяют в серной кислоте:

CuO + H 2 SO 4 = CuSO 4 + H 2 O, затем проводят реакцию замещения

CuSO 4 + Fe = FeSO 4 + Cu.

Демонстрационный опыт 3. Взаимодействие железа с раствором медного купороса.

Таким способом получают серебро, цинк, молибден, золото, ванадий и другие металлы.

Электрометаллургический способ.

Это способы получения металлов с помощью электрического тока (электролиза). Просмотр фрагмента медиалекции. (CD)

Этим методом получают алюминий, щелочные металлы, щелочноземельные металлы. При этом подвергают электролизу расплавы оксидов, гидроксидов или хлоридов:

NaCl -> Na + + Cl ?

катод Na + + e > Na 0 ¦ 2

анод 2Cl ? ?2e > Cl 2 0 ¦ 1

суммарное уравнение: 2NaCl = 2Na + Cl 2

Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит растворяет Al 2 O 3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия? электролитом.

Al 2 O 3 -> AlAlO 3 -> Al 3+ + AlO 3 3–

катод Al 3+ +3e -> Al 0 ¦ 4

анод 4AlO 3 3– – 12 e -> 2Al 2 O 3 +3O 2 ¦ 1

суммарное уравнение: 2Al 2 O 3 = 4Al + 3O 2 .

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

Термическое разложение соединений.

Железо взаимодействует с оксидом углерода (II) при повышенном давлении и температуре 100-200 0 , образуя пентакарбонил: Fe + 5CO = Fe (CO) 5

Пентакарбонил железа-жидкость, которую можно легко отделить от примесей перегонкой. При температуре около 250 0 карбонил разлагается, образуя порошок железа: Fe (CO) 5 = Fe + 5CO.

Если полученный порошок подвергнуть спеканию в вакууме или в атмосфере водорода, то получится металл, содержащий 99,98– 99,999% железа. Еще более глубокой степени очистки железа (до 99,9999%) можно достичь методом зонной плавки.

Таким образом, мы познакомились с природными соединениями металлов и способами выделения из них металла, как простого вещества.

IV. Закрепление темы.

Выполнить тестовые задания:

1. Укажите справедливые утверждения: а) все элементы d- и f-семейств являются металлами; б) среди элементов р-семейства нет металлов; в) гидроксиды металлов могут обладать как основными, так амфотерными и кислотными свойствами; г) металлы не могут образовывать гидроксиды с кислотными свойствами.

2. В каком ряду приведены символы соответственно самого твердого и самого тугоплавкого металлов? а) W, Ti; б) Cr, Hg; в) Cr, W; г) W, Cr,

3. Укажите символы металлов, которые можно окислить ионами Н + в водном растворе кислоты: а) Cu; б) Zn; в) Fe; г) Ag.

4. Какие металлы нельзя получить в достаточно чистом виде, восстанавливая их оксиды коксом? а) W; б) Cr; в) Na; г) Al.

5. С водой только при нагревании реагируют: а) натрий; б) цинк; в) медь; г) железо.

6. Какие утверждения для металлов неверны: а) металлы составляют большинство элементов Периодической системы; б) в атомах всех металлов на внешнем энергетическом уровне содержится не более двух электронов; в) в химических реакциях для металлов характерны восстановительные свойства; г) в каждом периоде атом щелочного металла имеет наименьший радиус.

7. Отметьте формулу оксида металла с наиболее выраженными кислотными свойствами:

а) K 2 O; б) MnO; в) Cr 2 O 3 ; г) Mn 2 O 7 .

8. В каких парах обе из реакций, схемы которых приведены ниже, позволяют получить металл? а) CuO + CO-> и CuSO 4 + Zn -> б) AgNO 3 -> и Cr 2 O 3 + Al в) ZnS + O 2 и Fe 2 O 3 + H 2 -> г) KNO 3 -> и ZnO + C.

9. В атомах каких металлов в основном состоянии на энергетическом d- подуровне содержится пять электронов? а) титана; б) хрома; в) сурьмы; г) марганца.

10. Какой минимальный объем (н. у.) оксида углерода (II) нужен для восстановления 320 г оксида железа (III) до магнетита? а) 14,93 л; б) 15,48 л; в) 20,12 л; г) 11,78 л.

Список используемой литературы

  1. О. С. Габриелян “Химия 9 класс”. М. “Дрофа”, 2000 год.
  2. О. С. Габриелян, И. Г. Остроумов “Настольная книга учителя химии 9 класс”. М. “Дрофа”, 2002 год.
  3. Сост. В. А. Крицман “Книга для чтения по неорганической химии”. М. “Просвещение”, 1984 год.
  4. В. И. Соболевский “Замечательные минералы”. М. “Просвещение”, 1983 год.
  5. А. С. Федоров “Творцы науки о металле”. М. “Наука”, 1980 год.
  6. А. Е. Ферсман “Занимательная минералогия”. Свердловское издательство, 1954 год.
  7. Ю. В. Ходаков “Общая и неорганическая химия”. М. ”Просвещение”, 1965 год
  8. 2 CD “ Химия 7– 11 класс”.
  9. CD “Уроки химии Кирилла и Мефодия 8– 9 класс”.