Как работают транзисторы в процессоре. Читаем электрические схемы с транзистором. Как работает транзистор

В свое время транзисторы пришли на смену электронным лампах. Это произошло благодаря тому, что они имеют меньшие габариты, высокую надежность и менее затратную стоимость производства. Сейчас, биполярные транзисторы являются основными элементами во всех усилительных схемах.

Представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода . Поэтому транзистор можно представить в виде двух встречно включенных диода . В зависимости от того, что будет являться основными носителями заряда, различают p-n-p и n-p-n транзисторы.


База – слой полупроводника, который является основой конструкции транзистора.

Эмиттером называется слой полупроводника, функция которого инжектирование носителей заряда в слой базы.

Коллектором называется слой полупроводника, функция которого собирать носители заряда прошедшие через базовый слой.

Как правило, эмиттер содержит намного большее количество основных зарядов, чем база. Это основное условие работы транзистора, потому что в этом случае, при прямом смещении эмиттерного перехода, ток будет обуславливаться основными носителями эмиттера. Эмиттер сможет осуществлять свою главную функцию – впрыск носителей в слой базы. Обратный ток эмиттера обычно стараются сделать как можно меньше. Увеличение основных носителей эмиттера достигается с помощью высокой концентрации примеси .

Базу делают как можно более тонкой . Это связано с временем жизни зарядов. Носители зарядов должны пересекать базу и как можно меньше рекомбинировать с основными носителями базы, для того чтобы достигнуть коллектора.

Для того чтобы коллектор мог наиболее полнее собирать носители прошедшие через базу его стараются сделать шире.

Принцип работы транзистора

Рассмотрим на примере p-n-p транзистора.


В отсутствие внешних напряжений, между слоями устанавливается разность потенциалов. На переходах устанавливаются потенциальные барьеры. Причем, если количество дырок в эмиттере и коллекторе одинаковое, тогда и потенциальные барьеры будут одинаковой ширины.

Для того чтобы транзистор работал правильно, эмиттерный переход должен быть смещен в прямом направлении, а коллекторный в обратном . Это будет соответствовать активному режиму работы транзистора. Для того чтобы осуществить такое подключение, необходимы два источника. Источник с напряжением Uэ подключается положительным полюсом к эмиттеру, а отрицательным к базе. Источник с напряжением Uк подключается отрицательным полюсом к коллектору, а положительным к базе. Причем Uэ < Uк.


Под действием напряжения Uэ, эмиттерный переход смещается в прямом направлении. Как известно, при прямом смещении электронно-дырочного перехода, внешнее поле направлено противоположно полю перехода и поэтому уменьшает его. Через переход начинают проходить основные носители, в эмиттере это дырки 1-5, а в базе электроны 7-8. А так как количество дырок в эмиттере больше, чем электронов в базе, то эмиттерный ток обусловлен в основном ими.

Эмиттерный ток представляет собой сумму дырочной составляющей эмиттерного тока и электронной составляющей базы.

Так как полезной является только дырочная составляющая, то электронную стараются сделать как можно меньше. Качественной характеристикой эмиттерного перехода является коэффициент инжекции .

Коэффициент инжекции стараются приблизить к 1.

Дырки 1-5 перешедшие в базу скапливаются на границе эмиттерного перехода. Таким образом, создается высокая концентрация дырок возле эмиттерного и низкая концентрация возле коллекторного перехода, в следствии чего начинается диффузионное движение дырок от эмиттерного к коллекторному переходу. Но вблизи коллекторного перехода концентрация дырок остается равной нулю, потому что как только дырки достигают перехода, они ускоряются его внутренним полем и экстрагируются (втягиваются) в коллектор. Электроны же, отталкиваются этим полем.

Пока дырки пересекают базовый слой они рекомбинируют с электронами находящимися там, например, как дырка 5 и электрон 6. А так как дырки поступают постоянно, они создают избыточный положительный заряд, поэтому, должны поступать и электроны, которые втягиваются через вывод базы и образуют базовый ток Iбр. Это важное условие работы транзистора – концентрация дырок в базе должна быть приблизительно равна концентрации электронов. Другими словами должна обеспечиваться электронейтральность базы.

Количество дырок дошедших до коллектора, меньше количество дырок вышедших из эмиттера на величину рекомбинировавших дырок в базе. То есть, ток коллектора отличается от тока эмиттера на величину тока базы.

Отсюда появляется коэффициент переноса носителей, который также стараются приблизить к 1.

Коллекторный ток транзистора состоит из дырочной составляющей Iкр и обратного тока коллектора.

Обратный ток коллектора возникает в результате обратного смещения коллекторного перехода, поэтому он состоит из неосновных носителей дырки 9 и электрона 10. Именно потому, что обратный ток образован неосновными носителями, он зависит только от процесса термогенерации, то есть от температуры. Поэтому его часто называют тепловым током .

От величины теплового тока зависит качество транзистора, чем он меньше, тем транзистор качественнее.

Коллекторный ток связан с эмиттерным коэффициентом передачи тока .

Во всех экспериментах используются транзисторы КТ315Б, диоды Д9Б, миниатюрные лампы накаливания на 2,5В х 0,068А. Головные телефоны - высокоомные, типа ТОН-2. Переменный конденсатор - любой, ёмкостью 15...180 пФ. Батарея питания состоит из двух последовательно соединённых батарей по 4,5В типоразмера 3R12. Лампы можно заменить на последовательные соединённые светодиод типа АЛ307А и резистор номиналом 1 кОм.

ЭКСПЕРИМЕНТ 1
ЭЛЕКТРИЧЕСКАЯ СХЕМА (проводники, полупроводники и изоляторы)

Электрический ток - это направленное движение электронов от одного полюса к другому под действием напряжения (батарея 9 В).

Все электроны имеют одинаковый отрицательный заряд. Атомы различных веществ имеют различное число электронов. Большинство электронов прочно связано с атомами, но имеются и так называемые «свободные», или валентные, электроны. Если к концам проводника приложить напряжение, то свободные электроны начнут двигаться к положительному полюсу батареи.

В некоторых материалах перемещение электронов относительно свободное, их называют проводниками; в других - перемещение затруднено, их называют полупроводниками; в третьих - вообще невозможно, такие материалы называют изоляторами, или диэлектриками.

Металлы являются хорошими проводниками тока. Такие вещества, как слюда, фарфор, стекло, шёлк, бумага, хлопок, относятся к изоляторам.

К полупроводникам относятся германий, кремний и др. Проводниками данные вещества становятся при определённых условиях. Это свойство используется при производстве полупроводниковых приборов - диодов, транзисторов.

Рис. 1. Определение проводимости воды

Этот эксперимент демонстрирует работу простой электрической цепи и различие в проводимости проводников, полупроводников и диэлектриков.

Соберите схему, как показано на рис. 1, и выведите оголённые концы проводов на переднюю часть платы. Соедините оголённые концы вместе, лампочка будет гореть. Это говорит о том, что через цепь проходит электрический ток.

С помощью двух проводов можно проверить проводимость различных материалов. Для точного определения проводимости тех или иных материалов необходимы специальные приборы. (По яркости горения лампочки можно лишь определить, является ли исследуемый материал хорошим или плохим проводником.)

Присоедините оголённые концы двух проводников к куску сухого дерева на небольшом расстоянии друг от друга. Лампочка гореть не будет. Это означает, что сухое дерево является диэлектриком. Если оголённые концы двух проводников присоединить к алюминию, меди или стали, лампочка будет гореть. Это говорит о том, что металлы являются хорошими проводниками электрического тока.

Опустите оголённые концы проводников в стакан с водопроводной водой (рис. 1, а). Лампочка не горит. Это означает, что вода является плохим проводником тока. Если в воду добавить немного соли и повторить опыт (рис. 1, б), лампочка будет гореть, что говорит о протекании тока в цепи.

Резистор 56 Ом в этой схеме и во всех последующих экспериментах служит для ограничения тока в цепи.

ЭКСПЕРИМЕНТ 2
ДЕЙСТВИЕ ДИОДА

Целью данного эксперимента является наглядная демонстрация того, что диод хорошо проводит ток в одном направлении и не проводит - в обратном.

Соберите схему, как показано на рис. 2, а. Лампа будет гореть. Поверните диод на 180° (рис. 2, б). Лампочка гореть не будет.

А теперь попытаемся разобраться в физической сущности эксперимента.

Рис. 2. Действие полупроводникового диода в электронной цепи.

Полупроводниковые вещества германий и кремний имеют по четыре свободных, или валентных, электрона. Атомы полупроводника связываются в плотные кристаллы (кристаллическую решётку) (рис. 3, а).

Рис. 3. Кристаллическая решётка полупроводников.

Если в полупроводник, имеющий четыре валентных электрона, ввести примесь, например мышьяка, имеющего пять валентных электронов (рис. 3, б), то пятый электрон в кристалле окажется свободным. Такие примеси обеспечивают электронную проводимость, или проводимость n-типа.

Примеси, имеющие меньшую валентность, чем атомы полупроводника, обладают способностью присоединять к себе электроны; такие примеси обеспечивают дырочную проводимость, или проводимость p-типа (рис. 3, в).

Рис. 4. p-n-переходы в полупроводниковом диоде.

Полупроводниковый диод состоит из спая материалов p- и n- типов (p-n-переход) (рис. 4, а). В зависимости от полярности приложенного напряжения p-n-переход может либо способствовать (рис. 4, г), либо препятствовать (рис. 4, в) прохождению электрического тока. На границе двух полупроводников еще до подачи внешнего напряжения создаётся двоичный электрический слой с местным электрическим полем напряжённостью Е 0 (рис. 4, б).

Если через диод пропустить переменный ток, то диод будет пропускать только положительную полуволну (рис. 4 г), а отрицательная проходить не будет (см. рис. 4, в). Диод, таким образом, преобразует, или «выпрямляет», переменный ток в постоянный.

ЭКСПЕРИМЕНТ 3
КАК РАБОТАЕТ ТРАНЗИСТОР

Этот эксперимент наглядно демонстрирует основную функцию транзистора, являющегося усилителем тока. Небольшой управляющий ток в цепи базы может вызвать большой ток в цепи эмиттер - коллектор. Меняя сопротивление базового резистора, можно менять ток коллектора.

Соберите схему (рис. 5). Поставьте в схему поочерёдно резисторы: 1 МОм, 470 кОм, 100 кОм, 22 кОм, 10 кОм. Можно заметить, что с резисторами 1 МОм и 470 кОм лампочка не горит; 100 кОм - лампочка едва горит; 22 кОм - лампочка горит ярче; полная яркость наблюдается при подключении базового резистора 10 кОм.

Рис. 6. Транзистор со структурой n-p-n.

Рис. 7. Транзистор со структурой p-n-p.

Транзистор представляет собой, по существу, два полупроводниковых диода, имеющих одну общую область - базу. Если при этом общей окажется область с p-проводимостью, то получится транзистор со структурой n-p-n (рис. 6); если общая область будет с n-проводимостью, то транзистор будет со структурой p-n-p (рис. 7).

Область транзистора, излучающая (эмигрирующая) носители тока, называется эмиттером; область, собирающая носители тока, называется коллектором. Зона, заключённая между этими областями, называется базой. Переход между эмиттером и базой называется эмиттерным, а между базой и коллектором - коллекторным.

На рис. 5 показано включение транзистора типа n-p-n в электрическую цепь.

При включении в цепь транзистора типа p-n-p полярность включения батареи Б меняется на противоположную.

Для токов, протекающих через транзистор, существует зависимость

I э = I б + I к

Транзисторы характеризуются коэффициентом усиления по току, обозначаемым буквой β, представляет собой отношение приращения тока коллектора к изменению тока базы.

Значение β лежит в пределах от нескольких десятков до нескольких сотен единиц в зависимости от типа транзистора.

ЭКСПЕРИМЕНТ 4
СВОЙСТВА КОНДЕНСАТОРА

Изучив принцип действия транзистора, можно продемонстрировать свойства конденсатора. Соберите схему (рис. 8), но не присоединяйте электролитический конденсатор 100 мкФ. Затем подключите его на некоторое время в положение А (рис. 8, а). Лампочка загорится и погаснет. Это говорит о том, что в цепи шел ток заряда конденсатора. Теперь поместите конденсатор в положение В (рис. 8, б), при этом руками не касайтесь выводов, иначе конденсатор может разрядиться. Лампочка загорится и погаснет, произошёл разряд конденсатора. Теперь снова поместите конденсатор в положение А. Произошёл его заряд. Положите конденсатор на некоторое время (10 с) в сторону на изолирующий материал, затем поместите в положение В. Лампочка загорится и погаснет. Из этого эксперимента видно, что конденсатор способен накапливать и хранить электрический заряд долгое время. Накопленный заряд зависит от ёмкости конденсатора.

Рис. 8. Схема, объясняющая принцип действия конденсатора.

Рис. 9. Изменение напряжения и тока на конденсаторе во времени.

Произведите заряд конденсатора, установив его в положение А, затем разрядите его, присоединив к выводам конденсатора проводники с оголёнными концами (проводник держите за изолированную часть!), и поместите его в положение В. Лампочка не загорится. Как видно из этого эксперимента, заряженный конденсатор выполняет роль источника питания (батареи) в цепи базы, но после использования электрического заряда лампочка гаснет. На рис. 9 представлены зависимости от времени: напряжения заряда конденсатора; тока заряда, протекающего в цепи.

ЭКСПЕРИМЕНТ 5
ТРАНЗИСТОР В КАЧЕСТВЕ ВЫКЛЮЧАТЕЛЯ

Соберите схему согласно рис. 10, но пока не устанавливайте резистор R1 и транзистор Т1 в схему. Ключ В должен быть подсоединён к схеме в точке А и Е, чтобы точку соединения резисторов R3, R1 можно было замыкать на общий провод (минусовая шина печатной платы).

Рис. 10. Транзистор в схеме работает как выключатель.

Подключите батарею, лампочка в цепи коллектора Т2 будет гореть. Теперь замкните цепь выключателем В. Лампочка погаснет, так как выключатель соединяет точку А с минусовой шиной, тем самым уменьшая потенциал точки А, следовательно, и потенциал базы Т2. Если выключатель вернуть в исходное положение, лампочка загорится. Теперь отсоедините батарею и подсоедините Т1, резистор R1 не подсоединяйте. Подключите батарею, лампочка снова загорится. Как и в первом случае, транзистор Т1 открыт и через него проходит электрический ток. Поставьте теперь резистор R1 (470 кОм) в точках С и D. Лампочка погаснет. Снимите резистор, и лампочка загорится снова.

Когда напряжение на коллекторе Т1 падает до нуля (при установке резистора 470 кОм), транзистор открывается. База транзистора Т2 подключается через Т1 к минусовой шине, и Т2 закрывается. Лампочка гаснет. Таким образом, транзистор Т1 выполняет роль выключателя.

В предыдущих экспериментах транзистор использовался как усилитель, теперь он использован в качестве выключателя.

Возможности применения транзистора в качестве ключа (выключателя) приведены в экспериментах 6, 7.

ЭКСПЕРИМЕНТ 6
АВАРИЙНАЯ СИГНАЛИЗАЦИЯ

Особенностью данной схемы является то, что транзистор Т1, используемый в качестве ключа, управляется фоторезистором R2.

Имеющийся в данном наборе фоторезистор меняет своё сопротивление от 2 кОм при сильном освещении до нескольких сотен кОм в темноте.

Соберите схему согласно рис. 11. В зависимости от освещения помещения, где вы проводите эксперимент, подберите резистор R1 таким образом, чтобы лампочка горела нормально без затемнения фоторезистора.

Рис. 11. Схема аварийной сигнализации на основе фоторезистора.

Состояние транзистора Т1 определяется делителем напряжения, состоящим из резистора R1 и фоторезистора R2.

Если фоторезистор освещён, сопротивление его мало, транзистор Т1 закрыт, тока в его коллекторной цепи нет. Состояние транзистора Т2 определяется подачей положительного потенциала резисторами R3 и R4 на базу Т2. Следовательно, транзистор Т2 открывается, течёт коллекторный ток, лампочка горит.

При затемнении фоторезистора его сопротивление сильно увеличивается и достигает величины, когда делитель подаёт напряжение на базу Т1, достаточное для его открывания. Напряжение на коллекторе Т1 падает почти до нуля, через резистор R4 запирает транзистор Т2, лампочка гаснет.

На практике в подобных схемах в коллекторную цепь транзистора Т2 могут быть установлены другие исполнительные механизмы (звонок, реле и т. д.).

В этой и в последующих схемах может быть использован фоторезистор типа СФ2-9 или аналогичный.

ЭКСПЕРИМЕНТ 7
АВТОМАТИЧЕСКОЕ УСТРОЙСТВО ВКЛЮЧЕНИЯ СВЕТА

В отличие от эксперимента 6, в данном- эксперименте при затемнении фоторезистора R1 лампочка горит (рис. 12).

Рис. 12. Схема, включающая свет автоматически.

При попадании света на фоторезистор его сопротивление сильно уменьшается, что приводит к открыванию транзистора Т1, а следовательно, к закрытию Т2. Лампочка не горит.

В темноте лампочка включается автоматически.

Это свойство может использоваться для включения и выключения ламп в зависимости от освещённости.

ЭКСПЕРИМЕНТ 8
СИГНАЛЬНОЕ УСТРОЙСТВО

Отличительной особенностью данной схемы является большая чувствительность. В этом и ряде последующих экспериментов используется комбинированное соединение транзисторов (составной транзистор) (рис. 13).

Рис. 13. Оптоэлектронное сигнальное устройство.

Принцип действия данной схемы не отличается от схемы . При определённом значении сопротивления резисторов R1 + R2 и сопротивления фоторезистора R3 в цепи базы транзистора Т1 протекает ток. В цепи коллектора Т1 тоже течёт ток, но в (3 раз больший тока базы Т1. Допустим, что (β=100. Весь ток, идущий через эмиттер Т1, должен пройти через переход эмиттер - база Т2. Тогда ток коллектора Т2 в β раз больше тока коллектора Т1, ток коллектора Т1 в β раз больше тока базы Т1, ток коллектора Т2 приблизительно в 10 000 раз больше тока базы Т1. Таким образом, составной транзистор можно рассматривать как единый транзистор с очень большим коэффициентом усиления и большой чувствительностью. Второй особенностью составного транзистора является то, что транзистор Т2 должен быть достаточно мощным, в то время как управляющий им транзистор Т1 может, быть маломощным, так как ток, проходящий через него, в 100 раз меньше тока, проходящего через Т2.

Работоспособность схемы, приведённой на рис. 13, определяется освещённостью помещения, где проводится эксперимент, поэтому важно подобрать сопротивление R1 делителя верхнего плеча так, чтобы в освещённой комнате лампочка не горела, а горела при затемнении фоторезистора рукой, затемнении комнаты шторами или при выключении света, если эксперимент проводится вечером.

ЭКСПЕРИМЕНТ 9
ДАТЧИК ВЛАЖНОСТИ

В этой схеме (рис. 14) для определения влажности материала также используется составной транзистор, обладающий большой чувствительностью. Смещение базы Т1 обеспечивается резистором R1 и двумя проводниками с оголёнными концами.

Проверьте электрическую цепь, слегка сжимая пальцами обеих рук оголённые концы двух проводников, при этом не соединяя их друг с другом. Сопротивление пальцев достаточно для срабатывания схемы, и лампочка загорается.

Рис. 14. Схема датчика влажности. Неизолированные концы проводников пронизывают промокательную бумагу.

Теперь оголённые концы пропустите через промокательную бумагу на расстоянии примерно 1,5-2 см, другие концы присоедините к схеме согласно рис. 14. Затем увлажните промокательную бумагу между проводами водой. Лампочка загорается (В данном случае уменьшение сопротивления произошло за счёт растворения водой имеющихся в бумаге солей.).

Если промокательную бумагу пропитать соляным раствором, а затем высушить и повторить опыт, эффективность эксперимента повышается, концы проводников можно разнести на большее расстояние.

ЭКСПЕРИМЕНТ 10
СИГНАЛЬНОЕ УСТРОЙСТВО

Данная схема аналогична предыдущей, разница лишь в том, что лампа горит при освещении фоторезистора и гаснет при затемнении (рис. 15).

Рис. 15. Сигнальное устройство на фоторезисторе.

Схема работает следующим образом: при обычном освещении фоторезистора R1 лампочка будет гореть, так как сопротивление R1 мало, транзистор Т1 открыт. При выключении света лампочка погаснет. Свет карманного фонарика или зажжённых спичек заставит лампочку снова гореть. Чувствительность цепи регулируется увеличением или уменьшением сопротивления резистора R2.

ЭКСПЕРИМЕНТ 11
СЧЁТЧИК ИЗДЕЛИЙ

Этот эксперимент надо проводить в полузатемнённом помещении. Все время, когда свет падает на фоторезистор, индикаторная лампочка Л2 горит. Если поместить кусок картона между источником света (лампочкой Л1 и фоторезистором, лампочка Л2 гаснет. Если убрать картон, лампочка Л2 загорается вновь (рис. 16).

Рис. 16. Счётчик изделий.

Чтобы эксперимент прошёл удачно, надо отрегулировать схему, т. е. подобрать сопротивление резистора R3 (наиболее подходящим в этом случае является 470 Ом).

Эта схема практически может быть использована для счта партии изделий на конвейере. Если источник света и фоторезистор размещены таким образом, что между ними проходит партия изделий, цепь то включается, то выключается, так как поток света прерывается проходящими изделиями. Вместо индикаторной лампочки Л2 используется специальный счётчик.

ЭКСПЕРИМЕНТ 12
ПЕРЕДАЧА СИГНАЛА С ПОМОЩЬЮ СВЕТА

Рис. 23. Делитель частоты на транзисторах.

Транзисторы Т1 и Т2 открываются поочерёдно. Управляющий сигнал посылается в триггер. Когда транзистор Т2 открыт, лампочка Л1 не горит. Лампочка Л2 загорается, когда транзистор Т3 открыт. Но транзисторы Т3 и Т4 открываются и закрываются поочерёдно, следовательно, лампочка Л2 загорается при каждом втором управляющем сигнале, посылаемом мультивибратором. Таким образом, частота горения лампочки Л2 в 2 раза меньше частоты горения лампочки Л1.

Это свойство может использоваться в электрооргане: частоты всех нот верхней октавы органа делятся пополам и создаётся тон октавой ниже. Процесс может повторяться.

ЭКСПЕРИМЕНТ 18
СХЕМА «И» ПО ЕДИНИЦАМ

В этом эксперименте транзистор используется в качестве ключа, а лампочка является индикатором выхода (рис. 24).

Эта схема является логической. Лампочка будет гореть, если на базе транзистора (точка С) будет высокий потенциал.

Допустим, точки А и В не соединены с отрицательной шиной, они имеют высокий потенциал, следовательно, в точке С также высокий потенциал, транзистор открыт, лампочка горит.

Рис. 24. Логический элемент 2И на транзисторе.

Примем условно: высокий потенциал - логическая «1» - лампочка горит; низкий потенциал - логический «0» - лампочка не горит.

Таким образом, при наличии в точках А и В логических «1», в точке С тоже будет «1».

Теперь соединим точку А с отрицательной шиной. Её потенциал станет низким (упадёт до «0» В). Точка В имеет высокий потенциал. По цепи R3 - Д1 - батарея потечёт ток. Следовательно, в точке С будет низкий потенциал или «0». Транзистор закрыт, лампочка не горит.

Соединим с землёй точку В. Ток теперь течёт по цепи R3 - Д2 - батарея. Потенциал в точке С низкий, транзистор закрыт, лампочка не горит.

Если обе точки соединить с землёй, в точке С также будет низкий потенциал.

Подобные схемы могут быть использованы в электронном экзаменаторе и других логических схемах, где сигнал на выходе будет лишь при наличии одновременных сигналов в двух и более входных каналах.

Возможные состояния схемы отражены в таблице.

Таблица истинности схемы И

ЭКСПЕРИМЕНТ 19
СХЕМА «ИЛИ» ПО ЕДИНИЦАМ

Эта схема противоположна предыдущей. Чтобы в точке С был «0», необходимо, чтобы в точках А и В также был «0», т. е. точки А и В надо соединить с отрицательной шиной. В этом случае транзистор закроется, лампочка погаснет (рис. 25).

Если теперь только одну из точек, А или В, соединить с отрицательной шиной, то в точке С все равно будет высокий уровень, т. е. «1», транзистор открыт, лампочка горит.

Рис. 25. Логический элемент 2ИЛИ на транзисторе.

При подсоединении точки В к отрицательной шине ток пойдёт через R2, Д1 и R3. Через диод Д2 ток не пойдёт, так как он включён в обратном для проводимости направлении. В точке С будет около 9 В. Транзистор открыт, лампочка горит.

Теперь точку А соединим с отрицательной шиной. Ток пойдёт через R1, Д2, R3. Напряжение в точке С будет около 9 В, транзистор открыт, лампочка горит.

Таблица истинности схемы ИЛИ

ЭКСПЕРИМЕНТ 20
СХЕМА «НЕ» (ИНВЕРТОР)

Этот эксперимент демонстрирует работу транзистора в качестве инвертора - устройства, способного менять полярность выходного сигнала относительно входного на противоположный. В экспериментах и транзистор не являлся частью действующих логических схем, он лишь служил для включения лампочки. Если точку А соединить с отрицательной шиной, то потенциал её упадёт до,«0», транзистор закроется, лампочка погаснет, в точке В - высокий потенциал. Это означает логическую «1» (рис. 26).

Рис. 26. Транзистор работает как инвертор.

Если точка А не соединена с отрицательной шиной, т. е. в точке А - «1», то транзистор открыт, лампочка горит, напряжение в точке В близко к «0» или это составляет логический «0».

В этом эксперименте транзистор является составной частью логической схемы и может использоваться для преобразования схемы ИЛИ в ИЛИ-НЕ и схемы И в И-НЕ.

Таблица истинности схемы НЕ

ЭКСПЕРИМЕНТ 21
СХЕМА «И-НЕ»

Этот эксперимент сочетает в себе два эксперимента: 18 - схема И и 20 - схема НЕ (рис. 27).

Данная схема функционирует аналогично схеме , формируя на базе транзистора «1» или «0».

Рис. 27. Логический элемент 2И-НЕ на транзисторе.

Транзистор используется в качестве инвертора. Если на базе транзистора появляется «1», то на выходе точка - «0» и наоборот.

Если потенциалы в точке D сравнить с потенциалами в точке С , видно, что они инвертированы.

Таблица истинности схемы И-НЕ

ЭКСПЕРИМЕНТ 22
СХЕМА «ИЛИ-НЕ»

Этот эксперимент сочетает в себе два эксперимента: - схема ИЛИ и - схема НЕ (рис. 28).

Рис. 28. Логический элемент 2ИЛИ-НЕ на транзисторе.

Схема функционирует точно так же, как в эксперименте 20 (на базе транзистора вырабатывается «0» или «1»). Разница лишь в том, что транзистор используется в качестве инвертора: если «1» на входе транзистора, то «0» на его выходе и наоборот.

Таблица истинности схемы ИЛИ-НЕ

ЭКСПЕРИМЕНТ 23
СХЕМА «И-НЕ», СОБРАННАЯ НА ТРАНЗИСТОРАХ

Эта схема состоит из двух логических схем НЕ, коллекторы транзисторов которых соединены в точке С (рис. 29).

Если обе точки, А и В, соединить с отрицательной шиной, то их потенциалы станут равными «0». Транзисторы закроются, в точке С будет высокий потенциал, лампочка гореть не будет.

Рис. 29. Логический элемент 2И-НЕ.

Если лишь точку А соединить с отрицательной шиной, в точке В логическая «1», Т1 закрыт, а Т2 открыт, течёт коллекторный ток, лампочка горит, в точке С логический «0».

Если точку В соединить с отрицательной шиной, то на выходе также будет «0», лампочка будет гореть, в этом случае Т1 открыт, Т2 закрыт.

И, наконец, если точки А и В имеют логическую «1» (не соединены с отрицательной шиной), оба транзистора открыты. На их коллекторах «0», ток течёт через оба транзистора, лампочка горит.

Таблица истинности схемы И-НЕ

ЭКСПЕРИМЕНТ 24
ДАТЧИК ТЕЛЕФОНА И УСИЛИТЕЛЬ

В схеме эксперимента оба транзистора используются в качестве усилителя звуковых сигналов (рис.30).

Рис. 30. Индуктивный датчик телефона.

Сигналы улавливаются и подаются на базу транзистора Т1 с помощью индуктивной катушки L, затем они усиливаются и подаются в телефон. Когда вы закончили собирать схему на плате, расположите ферритовый стержень вблизи телефона перпендикулярно входящим проводам. Будет слышна речь.

В этой схеме и в дальнейшем в качестве индуктивной катушки L используется ферритовый стержень диаметром 8 мм и длиной 100-160 мм, марки 600НН. Обмотка содержит примерно 110 витков медного изолированного провода диаметром 0,15..0,3 мм типа ПЭЛ или ПЭВ.

ЭКСПЕРИМЕНТ 25
МИКРОФОННЫЙ УСИЛИТЕЛЬ

Если имеется в наличии лишний телефон (рис. 31), он может быть использован вместо катушки индуктивности в предыдущем эксперименте. В результате этого будем иметь чувствительный микрофонный усилитель.

Рис. 31. Микрофонный усилитель.

В пределах собранной схемы можно получить подобие устройства двусторонней связи. Телефон 1 можно использовать как приёмное устройство (подключение в точке А), а телефон 2 - как выходное устройство (подключение в точке В). При этом вторые концы обоих телефонов должны быть соединены с отрицательной шиной.

ЭКСПЕРИМЕНТ 26
УСИЛИТЕЛЬ ДЛЯ ПРОИГРЫВАТЕЛЯ

С помощью граммофонного усилителя (рис. 32) можно слушать записи, не нарушая покоя окружающих.

Схема состоит из двух каскадов звукового усиления. Входным сигналом является сигнал, идущий со звукоснимателя.

Рис. 32. Усилитель для проигрывателя.

На схеме буквой А обозначен датчик. Этот датчик и конденсатор С2 являются ёмкостным делителем напряжения для уменьшения первоначальной громкости. Подстроечный конденсатор С3 и конденсатор С4 являются вторичным делителем напряжения. С помощью С3 регулируется громкость.

ЭКСПЕРИМЕНТ 27
«ЭЛЕКТРОННАЯ СКРИПКА»

Здесь схема мультивибратора предназначена для создания электронной музыки. Схема аналогична . Главным отличием является то, что резистор смещения базы транзистора Т1 является переменным. Резистор 22 кОм (R2), соединённый последовательно с переменным резистором, обеспечивает минимальное сопротивление смещения базы Т1 (рис. 33).

Рис. 33. Мультивибратор для создания музыки.

ЭКСПЕРИМЕНТ 28
МИГАЮЩИЙ ЗУММЕР МОРЗЕ

В этой схеме мультивибратор предназначен для генерирования импульсов с тональной частотой. Лампочка загорается при включении питания схемы (рис. 34).

Телефон в этой схеме включается в цепь между коллектором транзистора Т2 через конденсатор С4 и отрицательной шиной платы.

Рис. 34. Генератор для изучения азбуки Морзе.

С помощью этой схемы можно практиковаться в изучении азбуки Морзе.

Если вас не устраивает тон звука, поменяйте местами конденсаторы С2 и С1.

ЭКСПЕРИМЕНТ 29
МЕТРОНОМ

Метроном - это прибор для задания ритма (темпа), например, в музыке. Для этих целей ранее применялся маятниковый метроном, который давал как визуальное, так и слышимое обозначение темпа.

В данной схеме указанные функции выполняет мультивибратор. Частота темпа равна примерно 0,5 с (рис. 35).

Рис. 35. Метроном.

Благодаря телефону и индикаторной лампочке есть возможность слышать и зрительно ощущать заданный ритм.

ЭКСПЕРИМЕНТ 30
ЗВУКОВОЕ СИГНАЛЬНОЕ УСТРОЙСТВО С АВТОМАТИЧЕСКИМ ВОЗВРАТОМ В ИСХОДНОЕ ПОЛОЖЕНИЕ

Эта схема (рис. 36) демонстрирует применение одновибратора, работа которого описана в эксперименте 14. В исходном состоянии транзистор Т1 открыт, а Т2 закрыт. Телефон здесь используется в качестве микрофона. Свист в микрофон (можно просто подуть) или лёгкое постукивание возбуждает переменный ток в цепи микрофона. Отрицательные сигналы, поступая на базу транзистора Т1, закрывают его, а следовательно, открывают транзистор Т2, в цепи коллектора Т2 появляется ток, и лампочка загорается. В это время происходит заряд конденсатора С1 через резистор R1. Напряжение заряженного конденсатора С2 достаточно для открывания транзистора Т1, т. е. схема возвращается в своё первоначальное состояние самопроизвольно, лампочка при этом гаснет. Время горения лампочки составляет около 4 с. Если конденсаторы С2 и С1 поменять местами, то время горения лампочки увеличится до 30 с. Если резистор R4 (1 кОм) заменить на 470 кОм, то время увеличится с 4 до 12 с.

Рис. 36. Акустическое сигнальное устройство.

Этот эксперимент можно представить в виде фокуса, который можно показать в кругу друзей. Для этого необходимо снять один из микрофонов телефона и положить его под плату около лампочки таким образом, чтобы отверстие в плате совпадало с центром микрофона. Теперь, если подуть на отверстие в плате, будет казаться, что вы дуете на лампочку и поэтому она загорается.

ЭКСПЕРИМЕНТ 31
ЗВУКОВОЕ СИГНАЛЬНОЕ УСТРОЙСТВО С РУЧНЫМ ВОЗВРАТОМ В ИСХОДНОЕ ПОЛОЖЕНИЕ

Эта схема (рис. 37) по принципу действия аналогична предыдущей, с той лишь разницей, что при переключении схема не возвращается автоматически в исходное состояние, а производится это с помощью выключателя В.

Рис. 37. Акустическое сигнальное устройство с ручным сбросом.

Состояние готовности схемы или исходное состояние будет, когда транзистор Т1 открыт, Т2 закрыт, лампа не горит.

Легкий свист в микрофон даёт сигнал, который запирает транзистор Т1, при этом открывая транзистор Т2. Сигнальная лампочка загорается. Она будет гореть до тех пор, пока транзистор Т2 не закроется. Для этого необходимо закоротить базу транзистора Т2 на отрицательную шину («землю») с помощью ключа В. К подобным схемам можно подключать другие исполнительные устройства, например реле.

ЭКСПЕРИМЕНТ 32
ПРОСТЕЙШИЙ ДЕТЕКТОРНЫЙ ПРИЁМНИК

Начинающему радиолюбителю конструирование радиоприёмников следует начинать с простейших конструкций, например с детекторного приёмника, схема которого представлена на рис. 38.

Работает детекторный приёмник следующим образом: электромагнитные волны, посылаемые в эфир радиостанциями, пересекая антенну приёмника, наводят в ней напряжение с частотой, соответствующей частоте сигнала радиостанции. Наведённое напряжение поступает во входной контур L, С1. Другими словами, этот контур называется резонансным, так как он заранее настраивается на частоту желаемой радиостанции. В резонансном контуре входной сигнал усиливается в десятки раз и после этого поступает на детектор.

Рис. 38. Детекторный приёмник.

Детектор собран на полупроводниковом диоде, который служит для выпрямления модулированного сигнала. Низкочастотная (звуковая) составляющая пройдёт через головные телефоны, и вы услышите речь или музыку в зависимости от передачи данной радиостанции. Высокочастотная составляющая продетектированного сигнала, минуя головные телефоны, пройдёт через конденсатор С2 на землю. Ёмкость конденсатора С2 определяет степень фильтрации высокочастотной составляющей продетектированного сигнала. Обычно ёмкость конденсатора С2 выбирают таким образом, чтобы для звуковых частот он представлял большое сопротивление, а для высокочастотной составляющей его сопротивление было мало.

В качестве конденсатора С1 можно использовать любой малогабаритный конденсатор переменной ёмкости с пределами измерения 10...200 пФ. В данном конструкторе для настройки контура используется керамический подстроечный конденсатор типа КПК-2 ёмкостью от 25 до 150 пФ.

Катушка индуктивности L имеет следующие параметры: число витков - 110±10, диаметр провода - 0,15 мм, тип - ПЭВ-2, диаметр каркаса из изоляционного материала - 8,5 мм.

АНТЕННА

Правильно собранный приёмник начинает работать сразу при подключении к нему наружной антенны, которая представляет собой кусок медного провода диаметром 0,35 мм, длиной 15-20 м, подвешенного на изоляторах на некоторой высоте над землёй. Чем выше будет находиться антенна над землёй, тем лучше будет приём сигналов радиостанций.

ЗАЗЕМЛЕНИЕ

Громкость приёма возрастает, если к приёмнику подключить заземление. Провод заземления должен быть коротким и иметь небольшое сопротивление. Его конец соединяется с медной трубой, идущей в глубь грунта.

ЭКСПЕРИМЕНТ 33
ДЕТЕКТОРНЫЙ ПРИЁМНИК С УСИЛИТЕЛЕМ НИЗКОЙ ЧАСТОТЫ

Эта схема (рис. 39) аналогична предыдущей схеме детекторного приёмника с той лишь разницей, что здесь добавлен простейший усилитель низкой частоты, собранный на транзисторе Т. Усилитель низкой частоты служит для увеличения мощности сигналов, продетектированных диодом. Схема настройки колебательного контура соединена с диодом через конденсатор С2 (0,1 мкФ), а резистор R1 (100 кОм) обеспечивает диоду постоянное смещение.

Рис. 39. Детекторный приёмник с однокаскадным УНЧ.

Для нормальной работы транзистора используется источник питания напряжением 9 В. Резистор R2 необходим для того, чтобы обеспечить подачу напряжения на базу транзистора для создания необходимого режима его работы.

Для этой схемы, как и в предыдущем эксперименте, необходимы наружная антенна и заземление.

ЭКСПЕРИМЕНТ 34

ПРОСТОЙ ТРАНЗИСТОРНЫЙ ПРИЁМНИК

Приёмник (рис. 40) отличается от предыдущего тем, что вместо диода Д установлен транзистор, который одновременно работает и как детектор высокочастотных колебаний, и как усилитель низкой частоты.

Рис. 40. Однотранзисторный приёмник.

Детектирование высокочастотного сигнала в этом приёмнике осуществляется на участке база - эмиттер, поэтому специального детектора (диода) такой приёмник не требует. Транзистор с колебательным контуром связан, как и в предыдущей схеме, через конденсатор ёмкостью 0,1 мкФ и является развязывающим. Конденсатор С3 служит для фильтрации высокочастотной составляющей сигнала, которая также усиливается транзистором.

ЭКСПЕРИМЕНТ 35
РЕГЕНЕРАТИВНЫЙ ПРИЁМНИК

В этом приёмнике (рис. 41) регенерация используется для улучшения чувствительности и избирательности контура. Эту роль выполняет катушка L2. Транзистор в этой схеме включён несколько иначе, чем в предыдущей. Напряжение сигнала с входного контура поступает на базу транзистора. Транзистор детектирует и усиливает сигнал. Высокочастотная составляющая сигнала не сразу поступает на фильтрующий конденсатор С3, а проходит сначала через обмотку обратной связи L2, которая находится на одном сердечнике с контурной катушкой L1. Благодаря тому, что катушки размещены на одном сердечнике, между ними существует индуктивная связь, и часть усиленного напряжения высокочастотного сигнала из коллекторной цепи транзистора снова поступает во входной контур приёмника. При правильном включении концов катушки связи L2 напряжение обратной связи, поступающее в контур L1 за счёт индуктивной связи, совпадает по фазе с приходящим из антенны сигналом, и происходит как бы увеличение сигнала. Чувствительность приёмника при этом повышается. Однако при большой индуктивной связи такой приёмник может превратиться в генератор незатухающих колебаний, и в телефонах прослушивается резкий свист. Чтобы устранить чрезмерное возбуждение, необходимо уменьшить степень связи между катушками L1 и L2. Достигается это либо удалением катушек друг от друга, либо уменьшением числа витков катушки L2.

Рис. 41. Регенеративный приёмник.

Может случиться, что обратная связь не даёт желаемого эффекта и приём станций, хорошо слышимых ранее, при введении обратной связи прекращается вовсе. Это говорит о том, что вместо положительной обратной связи образовалась отрицательная и нужно поменять местами концы катушки L2.

На небольших расстояниях от радиостанции описываемый приёмник хорошо работает без внешней антенны, на одну магнитную антенну.

Если слышимость радиостанции низкая, к приёмнику все же нужно подключить наружную антенну.

Приёмник с одной ферритовой антенной необходимо установить так, чтобы приходящие от радиостанции электромагнитные волны создавали в катушке колебательного контура наибольший сигнал. Таким образом, когда вы при помощи переменного„конденсатора настроились на сигнал радиостанции, если слышимость плохая, поворачивайте схему для получения сигналов в телефонах нужной для вас громкости.

ЭКСПЕРИМЕНТ 36
ДВУХТРАНЗИСТОРНЫЙ РЕГЕНЕРАТИВНЫЙ ПРИЁМНИК

Эта схема (рис. 42) отличается от предыдущей тем, что здесь используется усилитель низкой частоты, собранный на транзисторах Т2.

С помощью двухтранзисторного регенеративного приёмника можно вести приём большого количества радиостанций.

Рис. 42. Регенеративный приёмник с усилителем низкой частоты.

Хотя в данном конструкторе (набор № 2) имеется лишь катушка для длинных волн, схема может работать как на средних, так и на коротких волнах, при использовании соответствующих подстроечных катушек. Их можно изготовить самим.

ЭКСПЕРИМЕНТ 37
«ПЕЛЕНГАТОР»

Схема этого эксперимента аналогична схеме эксперимента 36 без антенны и «земли».

Настройтесь на мощную радиостанцию. Возьмите плату в руки (она должна находиться горизонтально) и вращайте, пока не исчезнет звук (сигнал) или, по крайней мере, уменьшится до минимума. В этом положении ось феррита точно указывает на передатчик. Если теперь повернуть плату на 90°, сигналы будут хорошо слышны. Но более точно местонахождение радиостанции можно определить графоматематическим методом, используя при этом компас для определения угла по азимуту.

Для этого необходимо знать направление расположения передатчика с разных позиций - А и В (рис. 43, а).

Допустим, мы находимся в точке А, определили направление расположения передатчика, оно составляет 60°. Переместимся теперь в точку В, при этом замерим расстояние АВ. Определим второе направление расположения передатчика, оно составляет 30°. Пересечение двух направлений и является местонахождением передающей станции.

Рис. 43. Схема пеленгации радиостанции.

Если у вас есть карта с расположением на ней радиовещательных станций, то есть возможность точно определить ваше местонахождение.

Настройтесь на станцию А, пусть она будет расположена под углом 45°, а затем настройтесь на станцию В; её азимут, допустим, равен 90°. Учитывая эти углы, проведите на карте через точки А и В линии, их пересечение и даст ваше местонахождение (рис. 43, б).

Таким же способом корабли и самолёты ориентируются в процессе движения.

КОНТРОЛЬ ЦЕПИ

Чтобы во время экспериментов схемы работали надёжно, необходимо удостовериться, что батарея заряжена, все соединения чистые, а все гайки надёжно завинчены. Выводы батареи должны быть правильно соединены; при подключении необходимо строго соблюдать полярность электролитических конденсаторов и диодов.

ПРОВЕРКА КОМПОНЕНТОВ

Диоды могут быть проверены в ; транзисторы - в ; электролитические конденсаторы (10 и 100 мкФ) - в . Головной телефон также можно проверить, подключив его к батарее,- в наушнике будет слышно «потрескивание».

Транзисторы являются активными компонентами и используются повсеместно в электронных цепях в качестве усилителей и коммутационных устройств (транзисторных ключей). Как усилительные приборы они применяются в приборах высокой и низкой частоты, генераторах сигналов, модуляторах, детекторах и многих других цепях. В цифровых схемах, в импульсных блоках питания и управляемых электроприводах они служат в качестве ключей.

Биполярные транзисторы

Так называется наиболее распространенный тип транзистора. Они делятся на npn и pnp типы. Материалом для них наиболее часто является кремний или германий. Поначалу транзисторы делались из германия, но они были очень чувствительны к температуре. Кремниевые приборы гораздо более стойки к ее колебаниям и дешевле в производстве.

Различные биполярные транзисторы показаны на фото ниже.

Маломощные приборы расположены в небольших пластиковых прямоугольных или металлический цилиндрических корпусах. Они имеют три вывода: для базы (Б), эмиттер (Э) и коллектор (К). Каждый из них подключен к одному из трех слоев кремния с проводимостью либо n- (ток образуют свободные электроны), либо p-типа (ток образуют так называемые положительно заряженные «дырки»), из которых и состоит структура транзистора.

Как устроен биполярный транзистор?

Принципы работы транзистора нужно изучать, начиная с его устройства. Рассмотрим структуру npn-транзистора, которая изображена на рис.ниже.

Как видим, он содержит три слоя: два с проводимостью n-типа и один - p-типа. Тип проводимости слоев определяется степенью легирования специальными примесями различных частей кремниевого кристалла. Эмиттер n-типа очень сильно легирован, чтобы получить множество свободных электронов как основных носителей тока. Очень тонкая база p-типа слегка легирована примесями и имеет высокое сопротивление, а коллектор n- типа очень сильно легирован, чтобы придать ему низкое сопротивление.

Принципы работы транзистора

Лучшим способом познакомиться с ними является экспериментальный путь. Ниже приведена схема простой цепи.

Она использует силовой транзистор для управления свечением лампочки. Вам также понадобится батарейка, небольшаю лампочка от фонарика примерно 4,5 В/0,3 А, потенциометр в виде переменного резистора (5К) и резистор 470 Ом. Эти компоненты должны быть соединены, как показано на рисунке справа от схемы.

Поверните движок потенциометра в крайнее нижнее положение. Это понизит напряжение на базе (между базой и землёй) до нуля вольт (U BE = 0). Лампа не светится, что означает отсутствие тока через транзистор.

Если теперь поворачивать рукоятку от ее нижней позиции, то U BE постепенно увеличивается. Когда оно достигает 0,6 В, ток начинает втекать в базу транзистора, и лампа начинает светиться. Когда рукоятка сдвигается дальше, напряжение U BE остается на уровне 0,6 В, но ток базы увеличивается и это увеличивает ток через цепь коллектор-эмиттер. Если рукоятка сдвинута в верхнее положение, напряжение на базе будет немного увеличено до 0,75 В, но ток значительно возрастет и лампа будет светиться ярко.

А если измерить токи транзистора?

Если мы включим амперметр между коллектором (C) и лампой (для измерения I C), другой амперметр между базой (B) и потенциометром (для измерения I B), а также вольтметр между общим проводом и базой и повторим весь эксперимент, мы сможем получить некоторые интересные данные. Когда рукоятка потенциометра находится в его низшей позиции, U BE равно 0 В, также как и токи I C и I B . Когда рукоятку сдвигают, эти значения растут до тех пор, пока лампочка не начинает светиться, когда они равны: U BE = 0.6 В, I B = 0,8 мА и I C = 36 мА.

В итоге мы получаем от этого эксперимента следующие принципы работы транзистора: при отсутствии положительного (для npn-типа) напряжения смещения на базе токи через его выводы равны нулю, а при наличии напряжения и тока базы их изменения влияют на ток в цепи коллектор - эмиттер.

Что происходит при включении питания транзистора

Во время нормальной работы, напряжение, приложенное к переходу база-эмиттер, распределяется так, что потенциал базы (p-типа) приблизительно на 0,6 В выше, чем у эмиттера (n-типа). При этом к данному переходу приложено прямое напряжение, он смещен в прямом направлении и открыт для протекания тока из базы в эмиттер.

Гораздо более высокое напряжение приложено к переходу база-коллектор, причем потенциал коллектора (n-типа) оказывается более высоким, чем у базы (p-типа). Так что к переходу приложено обратное напряжение и он смещен в обратном направлении. Это приводит к образованию довольно толстого обедненного электронами слоя в коллекторе вблизи базы, когда к транзистору прикладывается напряжение питания. В результате ток через цепь коллектор-эмиттер не проходит. Распределение зарядов в зонах переходов npn-транзистора показан на рисунке ниже.

Какова роль тока базы?

Как же заставить работать наш электронный прибор? Принцип действия транзистора заключается во влиянии тока базы на состояние закрытого перехода база-коллектор. Когда переход база-эмиттер смещен в прямом направлении, небольшой ток будет поступать в базу. Здесь его носителями являются положительно заряженные дырки. Они комбинируются с электронами, поступающими из эмиттера, обеспечивая ток I BE . Однако вследствие того, что эмиттер очень сильно легирован, гораздо больше электронов поступает из него в базу, чем способно соединиться с дырками. Это означает, что возникает большая концентрация электронов в базе, и большинство из них пересекает ее и попадает в обедненный электронами слой коллектора. Здесь они попадают под влияние сильного электрического поля, приложенного к переходу база-коллектор, проходят через обедненный электронами слой и основной объем коллектора к его выводу.

Изменения тока, втекающего в базу, влияют на количество привлеченных от эмиттера электронов. Таким образом, принципы работы транзистора могут быть дополнены следующим утверждением: очень небольшие изменения в базовом токе вызывают очень большие изменения в токе, протекающем от эмиттера к коллектору, т.е. происходит усиление тока.

Типы полевых транзисторов

По английски они обозначаются FETs - Field Effect Transistors, что можно перевести как «транзисторы с полевым эффектом». Хотя есть много путаницы в названиях для них, но встречаются в основном два основных их типа:

1. С управляющим pn-переходом. В англоязычной литературе они обозначаются JFET или Junction FET, что можно перевести как «переходный полевой транзистор». Иначе они именуются JUGFET или Junction Unipolar Gate FET.

2. С изолированным затвором (иначе МОП- или МДП-транзисторы). По английски они обозначаются IGFET или Insulated Gate FET.

Внешне они очень похожи на биполярные, что подтверждает фото ниже.

Устройство полевого транзистора

Все полевые транзисторы могут быть названы УНИПОЛЯРНЫМИ приборами, потому что носители заряда, которые образуют ток через них, относятся к единственному для данного транзистора типу - либо электроны, либо «дырки», но не оба одновременно. Это отличает принцип работы транзистора полевого от биполярного, в котором ток образуется одновременно обоими этими типами носителей.

Носители тока протекают в полевых транзисторах с управляющим pn-переходом по слою кремния без pn-переходов, называемому каналом, с проводимостью либо n-, либо p-типа между двумя выводами, именуемыми «истоком» и «стоком» - аналогами эмиттера и коллектора или, точнее,катода и анода вакуумного триода. Третий вывод - затвор (аналог сетки триода) - присоединен к слою кремния с другим типом проводимости, чем у канала исток-сток. Структура такого прибора показана на рисунке ниже.

Как же работает полевой транзистор? Принцип работы его заключается в управлении поперечным сечением канала путем приложения напряжения к переходу затвор-канал. Его всегда смещают в обратном направлении, поэтому транзистор практически не потребляет тока по цепи затвора, тогда как биполярному прибору для работы нужен определенный ток базы. При изменении входного напряжения область затвора может расширяться, перекрывая канал исток-сток вплоть до полного его закрытия, управляя таким образом током стока.

Транзистор (transistor) – полупроводниковый элемент с тремя выводами (обычно), на один из которых (коллектор ) подаётся сильный ток, а на другой (база ) подаётся слабый (управляющий ток ). При определённой силе управляющего тока,как бы «открывается клапан» и ток с коллектора начинает течь на третий вывод (эмиттер ).


То есть транзистор – это своеобразный клапан , который при определённой силе тока, резко уменьшает сопротивление и пускает ток дальше (с коллектора на эмиттер).Происходит это потому, что при определенных условиях, дырки имеющие электрон, теряют его принимая новый и так по кругу. Если к базе не прилагать электрический ток, то транзистор будет находиться в уравновешенном состоянии и не пропускать ток на эмиттер.

В современных электронных чипах, количество транзисторов исчисляется миллиардами . Используются они преимущественно для вычислений и состоят из сложных связей.

Полупроводниковые материалы, преимущественно применяемые в транзисторах это: кремний , арсенид галлия и германий . Также существуют транзисторы на углеродных нанотрубках , прозрачные для дисплеев LCD и полимерные (наиболее перспективные).

Разновидности транзисторов:

Биполярные – транзисторы в которых носителями зарядов могут быть как электроны, так и «дырки». Ток может течь, как в сторону эмиттера , так и в сторону коллектора . Для управления потоком применяются определённые токи управления.

– распротранёные устройства в которых управление электрическим потоком происходит посредством электрического поля. То есть когда образуется большее поле – больше электронов захватываются им и не могут передать заряды дальше. То есть это своеобразный вентиль, который может менять количество передаваемого заряда (если полевой транзисторс управляемым p — n переходом). Отличительной особенностью данных транзисторов являются высокое входное напряжение и высокий коэффи­циент усиления по напряжению.

Комбинированные – транзисторы с совмещёнными резисторами, либо другими транзисторами в одном корпусе. Служат для различных целей, но в основном для повышения коэффициента усиления по току.

Подтипы:

Био-транзисторы – основаны на биологических полимерах, которые можно использовать в медицине, биотехнике без вреда для живых организмов. Проводились исследования на основе металлопротеинов, хлорофилла А (полученного из шпината), вируса табачной мозаики.

Одноэлектронные транзисторы – впервые были созданы российскими учёными в 1996 году . Могли работать при комнатной температуре в отличии от предшественников. Принцип работы схож с полевым транзистором, но более тонкий. Передатчиком сигнала является один или несколько электронов. Данный транзистор также называют нано- и квантовый транзистор. С помощью данной технологии, в будущем рассчитывают создавать транзисторы с размером меньше 10 нм , на основе графена .

Для чего используются транзисторы?

Используются транзисторы в усилительных схемах , лампах , электродвигателях и других приборах где необходимо быстрое изменение силы тока или положение вкл выкл . Транзистор умеет ограничивать силу тока либо плавно , либо методом импульс пауза . Второй чаще используется для -управления. Используя мощный источник питания, он проводит его через себя, регулируя слабым током.

Если силы тока недостаточно для включения цепи транзистора, то используются несколько транзисторов с большей чувствительностью, соединённые каскадным способом.

Мощные транзисторы соединённые в один или несколько корпусов, используются в полностью цифровых усилителях на основе . Часто им требуется дополнительное охлаждение . В большинстве схем, они работают в режиме ключа (в режиме переключателя).

Применяются транзисторы также в системах питания , как цифровых, так и аналоговых (материнские платы , видеокарты , блоки питания & etc ).

Центральные процессоры , тоже состоят из миллионов и миллиардов транзисторов, соединённых в определённом порядке для специализированных вычислений .

Каждая группа транзисторов, определённым образом кодирует сигнал и передаёт его дальше на обработку. Все виды и ПЗУ памяти, тоже состоят из транзисторов.

Все достижения микроэлектроники были бы практически невозможны без изобретения и использования транзисторов. Трудно представить хоть один электронный прибор без хотя бы одного транзистора.

В прошлой статье мы рассматривали схему без биполярного транзистора. Для того, чтобы понять, как работает транзистор, мы с вами соберем простой регулятор мощности свечения лампочки накаливания с помощью двух и транзистора.

Как работает транзистор

Давайте вспомним, как ведет себя транзистор. По идее, биполярный транзистор представляет из себя управляемое сопротивление между коллектором и эмиттером, которое управляется силой тока базы. Про все это я писал еще в .

Если представить транзистор, как этот краник, то можно провести небольшую аналогию. С помощью одного мизинчика я могу включать бешеный поток воды, который тотчас побежит по трубе.

Также не забывайте, что регулируя угол положения рукоятки, я также могу плавно регулировать поток воды в трубе.

Открываю кран, поток воды бежит на полную катушку:


Закрываю краник, вода не бежит:


Ну что вспомнили?

Управление мощностью с помощью транзистора

Итак, я буду делать схему регулятора мощности свечения лампочки накаливания с помощью советского транзистора КТ815Б. Она будет выглядеть следующим образом:


На схеме мы видим лампу накаливания, транзистор и два резистора. Один из них переменный. Итак, главное правило транзистора: меняя силу тока в цепи базы, мы тем самым меняем силу тока в цепи коллектора , а следовательно, мощность свечения самой лампы.

Как в нашей схеме будет все это выглядеть? Здесь я показал две ветви. Одну синим цветом, другую красным.


Как вы видите, в синей ветке цепи последовательно друг за другом идут +12В—-R1—-R2—-база—-эмиттер—-минус питания. А как вы помните, если резисторы либо различные потребители (нагрузки) цепи идут друг за другом последовательно, то через все эти нагрузки, потребители и резисторы протекает одна и та же сила тока . Правило делителя напряжения . То есть в данный момент для удобства объяснения, я назвал эту силу тока, как ток базы I б . Все то же самое можно сказать и о красной ветви. Ток пойдет по такому пути: +12В—-лампочка—-коллектор—-эмиттер—-минус питания. В ней будет протекать ток коллектора I к .

Итак, для чего мы сейчас разобрали эти ветви цепи? Дело в том, что через базу и эмиттер протекает базовый ток I б , который протекает также и через переменный резистор R1 и резистор R2. Через коллектор-эмиттер протекает ток коллектора , который также течет и через лампочку накаливания.

Ну и теперь самое интересное: коллекторный ток зависит от того, какая сила тока в данный момент течет через базу-эмиттер. То есть прибавив базовый ток, мы тем самым прибавляем и коллекторный ток. А раз коллекторный ток у нас стал больше, значит и через лампочку сила тока стала больше, и лампочка загорелась еще ярче. Управляя слабым током базы, мы можем управлять большим током коллектора. Это и есть принцип работы биполярного транзистора.

Как нам теперь регулировать силу тока через базу-эмиттер? Вспоминаем закон Ома : I=U/R . Следовательно, прибавляя или убавляя значение сопротивления в цепи базы, мы тем самым можем менять силу тока базы! Ну а она уже будет регулировать силу тока в цепи коллектора. Получается, меняя значение переменного резистора, мы тем самым меняем свечение лампочки;-)

И еще один небольшой нюанс.

Как вы заметили в схеме есть резистор R2. Для чего он нужен? Дело все в том, что может случится пробой перехода база-эмиттер. Или, простым языком, он выгорит. Если бы его не было, то при изменении сопротивления на переменном резисторе R1 до нуля Ом, мы бы махом выжгли базы-эмиттера. Поэтому, чтобы такого не было, мы должны подобрать резистор, который бы при сопротивлении на R1 в ноль Ом, ограничивал бы силу тока на базу, чтобы ее не выжечь.

Получается, мы должны подобрать такую силу тока на базу, чтобы лампочка светилась на полную яркость, но при этом переход база-эмиттер был бы целым. Если сказать языком электроники – мы должны подобрать такой резистор, который бы вогнал транзистор в границу насыщения, но не более того.

Работа реальной схемы

Ну а теперь дело за практикой. Собираем схему в реале:


Кручу переменный резистор и добиваюсь того, чтобы лампочка горела на весь накал:


Кручу еще чуток и лампочка светит в пол накала:


Выкручиваю переменный резистор до упора и лампочка тухнет:


Вместо лампочки можно взять любую другую нагрузку, например, вентилятор от компьютера. В этом случае, меняя значение переменного резистора, я могу управлять частотой вращения вентилятора, тем самым убавляя или прибавляя силу потока воздуха.

Здесь вентилятор не крутится, так как я на переменном резисторе выставил большое сопротивление:


Ну а здесь, покрутив переменный резистор, я уже могу регулировать обороты вентилятора:


Можно сказать, что получилась готовая схема, чтобы обдувать себя жарким летним деньком;-). Стало холодно – убавил обороты, стало слишком жарко – прибавил;-)

Прошаренные чайники-электронщики могут сказать: “А зачем так сильно все было усложнять? Не проще ли было просто взять переменный резистор и соединить последовательно с нагрузкой?

Да, можно.

Но должны соблюдаться некоторые условия. Предположим у нас лампа накаливания большой мощности, а значит и сила тока в цепи тоже будет приличная. В этом случае переменный резистор должен быть большой мощности, так как при выкручивании до упора в сторону маленького сопротивления через него побежит большой ток. Вспоминаем формулу выделяемой мощности на нагрузке: P=I 2 R . Переменный резистор сгорит (проверено не раз на собственном опыте).

В схеме с транзистором весь груз ответственности, то бишь всю мощность рассеивания, транзистор берет на себя. В схеме с транзистором переменный резистор спалить уже будет невозможно, так как сила тока в цепи базы в десятки, а то и в сотни раз меньше (в зависимости от беты транзистора), чем сила тока через нагрузку, в нашем случае через лампочку.

Греться по-максимуму транзистор будет только тогда, когда мы регулируем мощность нагрузки наполовину. В этом случае половина отсекаемой мощности в нагрузке будет рассеиваться на транзисторе. Поэтому, если вы регулируете мощную нагрузку, то для начала поинтересуйтесь таким параметром, как мощность рассеивания транзистора и при необходимости не забывайте ставить транзисторы на радиаторы.

Резюме

Главное предназначение транзистора – управление большой силой тока с помощью малой силы тока, то есть с помощью маленького базового тока мы можем регулировать приличный коллекторный ток.

Есть критического значение базового тока, которые нельзя превышать, иначе сгорит переход база-эмиттер. Такая сила тока через базу возникает, если потенциал на базе будет более 5 Вольт в прямом смещении. Но лучше даже близко не приближаться к такому значению. Также не забывайте, чтобы открыть транзистор, на базе должен быть потенциал больше, чем 0,6-0,7 Вольт для кремниевого транзистора.

Резистор в базе служит для ограничения протекающего тока через базу-эмиттер. Его значение выбирают в зависимости от режима работы схемы. В основном это граница насыщения транзистора, при котором коллекторный ток начинает принимать свои максимальные значения.

При проектировании схемы не забываем, что лишняя мощность рассеивается на транзисторе. Самый щадящий режим – это режим отсечки и насыщения, то есть лампа либо вообще не горит, либо горит на всю мощность. Самая большая мощность будет выделяться на транзисторе в том случае, если лампа горит в пол накала.