Геометрия токарного резца. Основные углы токарного резца. Влияние углов токарного резца на процесс резания. Элементы и геометрия резца Основные элементы резца

Токарная обработка деталей предполагает применение разных видов резцов: проходные, расточные, резьбовые, фасонные. Они проводят черновую и чистовую обработку поверхностей детали, внутреннюю выборку, нарезание резьбы. имеет много признаков. Они конструктивно сформированы следующими основными частями: державкой, рабочей головкой (у некоторых видов резцов может быть сменной).

Под правильной заточкой понимают придание определённой геометрической формы головке резца — обеспечение требуемых значений угловых параметров.

Правильная ориентация режущей кромки определяется трёмя плоскостями. Имеют, установленные стандартами, названия: передняя, задняя и дополнительная (вспомогательная).

Вдоль первой происходит движение образовавшейся стружки. Она именуется главной задней поверхностью. Вторая, направлена вдоль задней поверхности резца. Её называют вспомогательной задней поверхностью. Обе поверхности резца называют кромками. Они повёрнуты лицевой стороной к обрабатываемой детали. Во время заточки уделяется внимание характеристикам встречи обеих кромок. Неправильная операция снижает качество обработки. Приводит к механическому повреждению резца.

Особый интерес представляет точка пересечения плоскостей, называемая вершиной. На неё приходится самая большая нагрузка.

Углы, определяющие характеристики резца делятся на следующие категории:

  • главные (в количестве двух);
  • вспомогательные (такое же количество);
  • углы в плане или в проекции (рассматриваются три угла).

Величины перечисленных показателей зависят от следующих характеристик:

  • формы выбранной заготовки;
  • назначения и конструкции резцов;
  • заданного качества обработки;
  • материала режущей головки (если она съёмная);
  • физических и механических характеристик металла изделия;
  • допустимого припуска;
  • скоростью вращения шпинделя.

Конструктивно резцы имеют четыре вида:

  • прямой (у них державка и головка располагается в двух вариантах, вдоль одной оси или на двух параллельных осях);
  • изогнутый (имеет изогнутую державку);
  • отогнутые (отклонён в сторону от направления поступательного движения заготовки);
  • оттянутый (ширина головки меньше в размерах, чем державка). Большое значение для формы наконечника играет качество требуемой операции. Их подразделяют на следующие категории:
  • черновая обработка (называют обдиркой);
  • получистовая;
  • чистовая;
  • прецизионная (высокой точности).

При задании углов обращают внимание на сторону подачи. Процесс может происходить слева или справа.

Основной называется плоскость, ориентированная вдоль движения резца. Располагается перпендикулярно по отношению к предыдущей — называется плоскостью резания.

Третьей является вспомогательная плоскость. Её след определяет углы резца. Для получения качественного изделия внимание обращают на угол резания и заострения.

Главные углы

Один получил наименование — главный передний угол. Второй соответственно именуется — главный задний.

Каждый влияет на результат обработки:

  • Первый непосредственно определяет качество удаляемой поверхности (получаемой стружки). Если он увеличивается — происходит повышенная деформация в верхнем слое. Небольшое значение позволяет инструменту значительно легче удалять лишний металл. Не вызывает повышенного сжатия данного слоя. Существенно облегчает процесс снятия и отведения лишнего металла.
  • Увеличение численной величины второго ослабляет надёжность крепления инструмента на резцедержателе. Способствует возрастанию частоты и амплитуды колебаний. Изменение характеристик увеличивает скорость износа резца. Уменьшение величины увеличивает площадь контакта режущей кромки с обрабатываемой поверхностью. Влечёт рост температуры резца.

Вспомогательные углы

Расположены на вспомогательной плоскости. Первый образован её угловой разницей с направлением, ориентированным продолжением режущей кромки.

Вторым является параметр, сформированный отрезком прямой, проходящей через вершину и поверхность расположения кромки.

Углы в плане

Для они имеют следующие названия углов в плане:

  • главный угол;
  • вспомогательный;
  • угол, расположенный у вершины.

Первый образуется между плоскостью расположения проекции кромки с главной плоскостью инструмента.

Второй определяется между продолжением проекции режущей кромки с плоскостью, направленной по движению заготовки.

Третий находится между первой перечисленной плоскостью с основной плоскостью.

Численные значения параметра, расположенного у вершины могут принимать положительные и отрицательные значения. Положительным он получается, когда вершина места заточки находится на нижней точке обрабатываемой детали. Знак минус — вершина достигает высшей точки.

Измерение углов резца

Каждый образец проходит процедуру измерения перечисленных характеристик. Их проводят с использованием специальных измерительных приборов. Используют настольный угломер, или механический, оснащённый нониусом. Полученные результаты обязательно фиксируются в журнале.

Первый тип измерителя позволяет определять параметры углов, расположенных на главной плоскости. Конструктивно он состоит из следующих деталей:

  • массивного основания;
  • стойки с перемещающимся шаблоном (для задания направления плоскостей);
  • измерительного сектора (оснащённого градусной линейкой);
  • стопорный винт (для фиксации полученного направления).

Последовательность проведения измерений производится следующим образом. Выбранный образец размещается на основании. Поверхность кромки совмещают с одной плоскостью стойки. Вторую направляют параллельно исследуемой кромки. Полученные значения на градусной линейке являются значением измеряемого показателя. Обязательным условием проведения измерений считается обеспечение плотного прилегания шаблона к соответствующей поверхности резца.

Измерение таких специфических параметров, как углы в плане осуществляется механическим угломером, оснащённым нониусом. Его конструкция включает следующие основные элементы:

  • двух специальных секторов, каждая из которых имеет свою угловую шкалу;
  • двух независимых измерительных направляющих;
  • специального подвижного нониуса.

Последовательность проведения измерений несколько отличается от последовательности операций настольного угломера.

Для получения точного значения параметра необходимо точно совместить одну планку с боковой поверхностью корпуса. Режущую кромку следует направить параллельно второй планке. Численные значения считывают с помощью имеющегося встроенного нониуса. Полученные значения фиксируются в документации.

На рис. 7.3 представлена классификация резцов. Наиболее распространенным инструментом для резания металла является токарный резец (рис. 7.4), который состоит из стержня 7 (или державки) и рабочей части - головки 6. Стержень служит для закрепления резца в резцедержателе станка. На рабочей части резца имеются режущие элементы: передня поверхность 5, по которой сходит стружка при резании, и две задние поверхности - главная 8 и вспомогательная 1.

Передняя и главная задняя поверхности образуют главную режущую кромку 2, выполняющую основную работу при резании.

Передняя и вспомогательная задняя поверхности образуют вспомогательную режущую кромку 4, а все три поверхности - вершину 3 резца.

Режущие свойства резца в значительной мере зависят от углов его заточки.


Рис. 7.3.

Рис. 7.4. Токарный резец: / - вспомогательная задняя поверхность; 2 - главная режущая кромка; 3 - вершина резца; 4 - вспомогательная режущая кромка; 5 - передняя поверхность; 6 - рабочая часть; 7 - стержень; 8 - главная задняя поверхность

Для определения параметров резца устанавливают координатные плоскости - плоскость резания (ПР) и основную плоскость (ОП) (рис. 7.5).


Рис. 7.5. Параметры токарного резца: / - обрабатываемая поверхность; II - обработанная поверхность; III - поверхность резания; ОП - основная плоскость;

ПР - плоскость резания

Плоскость резания проходит через главную режущую кромку касательно к поверхности резания.

Основная плоскость проходит параллельно продольной и поперечной подачам.

Параметры резца, как правило, рассматриваются в плане (вид на резец и деталь сверху) и в секущих плоскостях.

Главной секущей плоскостью называется плоскость, перпендикулярная проекции главной режущей кромки на основную плоскость.

Вспомогательная секущая плоскость перпендикулярна к проекции вспомогательной режущей кромки на основную плоскость.

Главные углы резца лежат в главной секущей плоскости. Главный задний угол а - угол между плоскостью резания и главной задней поверхностью.

Главный передний угол у - угол между передней поверхностью резца и плоскостью, перпендикулярной к плоскости резания. Он может быть положительным и отрицательным.

Угол заострения р - угол между передней и главной задней поверхностями.

Угол резания 5 - угол между плоскостью резания и передней поверхностью резца.

При положительном значении угла у существуют зависимости:

а + р + у = 90;

  • 5 + у = 90;
  • 5 = 90 - у;
  • 5 = а + р.

Во вспомогательной секущей плоскости, перпендикулярной проекции вспомогательной режущей кромки на основную плоскость, располагаются вспомогательный задний а! и вспомогательный передний у, углы.

Главный угол в плане (р - угол между проекцией главной режущей кромки на основную плоскость и направлением подачи.

Вспомогательным углом в плане ф, называется угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением, противоположным направлению подачи.

Угол при вершине резца (а) - угол между проекциями главной и вспомогательной режущих кромок на основную плоскость.

Угол наклона главной режущей кромки X - угол между режущей кромкой и линией, проведенной через вершину резца параллельно основной плоскости. Этот угол измеряется в плоскости, проходящей через главную режущую кромку перпендикулярно основной плоскости.

Все перечисленные выше углы имеют определенное значение:

  • угол а определяет степень трения между обрабатываемой поверхностью заготовки и главной задней поверхностью резца. Его величина находится в пределах 4-15°, в большинстве случаев он равен 8°. Увеличение угла а приводит к некоторому уменьшению деформации срезаемого слоя и уменьшению силы резания;
  • с увеличением главного угла ср увеличивается толщина срезаемого слоя;
  • угол у оказывает решающее влияние на образование и сход стружки. С его увеличением инструмент легче врезается в материал, снижаются силы резания, улучшается качество поверхности, но повышается износ инструмента;
  • угол е в значительной степени влияет на стойкость резца: чем больше его значение, тем больше (при прочих равных условиях) стойкость резца;
  • угол X определяет отвод стружки в ту или другую сторону. Для черновых резцов значение его находится в пределах от О до +10°, для чистовых - от 0 до -3°.

Резец состоит из державки I (рис. 1.2), которая служит для установки резца на станке, и режущей ча­сти (лезвия) И. На режущей части выделяют следующие конструктивные элементы: переднюю поверх­ность лезвия 7, по которой сходит стружка; главную заднюю поверхность лезвия 2, которая обращена к поверхности резания; вспомогательную заднюю поверхность лезвия 3, которая обращена к обработан­ной поверхности; главную режущую кромку 4, которая образована пересечением передней и главной задней поверхностей лезвия (выполняет основную работу резания); вспомогательную режущую кромку 5, которая образована пересечением передней и вспомогательной задней поверхностей лезвия; вершину лезвия 6, образованную пересечением главной и вспомогательной режущих кромок.

Рис. 1.2

1.8. Геометрические параметры режущей части резца

К геометрическим параметрам режущей части резца относят углы заточки лезвия и радиус при вер­шине резца.

Геометрические параметры резца рассматривают в статике относительно двух координатных плос­костей: основной и плоскости резания (рис. 1.3).

Основная плоскость Р у - плоскость, параллельная направлениям подач токарного станка (5 пр, 5 П) и проходящая через главную режущую кромку резца.

Плоскость резания Р п - плоскость, проходящая касательно к главной режущей кромке лезвия и перпендикулярно основной плоскости.

Для определения действительных значений углов заточки резца проведем главную секущую плос­кость Р т.

Главная секущая плоскость Р х - плоскость, проходящая перпендикулярно к линии пересечения основной плоскости и плоскости резания. Это сечение показано на рис. 1.4.

К основным углам заточки относят:

передний угол у - угол между передней поверхностью лезвия и основной плоскостью (измеряют в главной секущей плоскости);

главный задний угол а - угол между главной задней поверхностью лезвия и плоскостью резания (измеряют в главной секущей плоскости);

главный угол в плане ср - угол между проекцией главной режущей кромки на основную плоскость и направлением движения продольной подачи;

вспомогательный угол в плане (р 2 - угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением, обратным движению продольной подачи.

Геометрические параметры режущей части резца выбирают в зависимости от обрабатываемого ма­териала и других условий обработки.

Для измерения углов заточки резца используют специальное устройство -угломер.

Угломер (рис. 1.5) состоит из основания 1 , вертикальной стойки 2 и шкального устройства 3 с измери­тельной линейкой 4 , которая может поворачиваться вокруг оси 6. Шкальное устройство направляется по стойке и при необходимости может поворачиваться вокруг оси стойки, фиксируясь в любом положении по высоте. Положение поворотной измерительной линейки фиксируется винтом 5.

Рис. 1.5

При измерении углов у и а измерительную линейку устанавливают перпендикулярно к главному режущему лезвию резца. При измерении переднего угла у линейка 4 совмещается с передней поверхно­стью резца, а при измерении главного заднего угла а - с главной задней поверхностью. По показаниям шкалы угломера определяют значение углов.

Вопросы для самопроверки

    Перечислите формообразующие движения.

    Что называют главным движением резания?

    Что называют движением подачи?

    Что называют режимом обработки (режимом резания)?

    Что. изображают на схеме обработки?

    В каких единицах измеряют скорость главного движения резания и подачи при точении?

    Какова главная конструктивная особенность любого режущего инструмента?

    Назовите части, элементы и геометрические параметры токарного проходного прямого резца.

Т е м а 2. ОБРАБОТКА ЗАГОТОВОК ТОЧЕНИЕМ

Цель - изучение технологических возможностей точения, основных узлов токарно-винторезного станка и их назначения, инструментов для выполнения разных видов токарных работ; получение прак­тических навыков наладки станка и работы на нем.

    Назначение и область применения точения

    Технологическое оборудование

    Установка заготовок

    Инструмент для токарных работ

    Кинематические методы формообразования поверхностей точением

Вопросы для самопроверки

    Назначение и область применения точения

Точение - вид лезвийной обработки резанием с вращательным главным движением резания, сооб­щаемым заготовке, и поступательным движением подачи, сообщаемым инструменту. Точением обраба­тывают поверхности тел вращения на всех типах токарных станков. Точением получают наружные и внутренние цилиндрические, конические, фасонные, резьбовые, торцовые поверхности, а также коль­цевые канавки разного вида.

Основные виды токарных работ: обтачивание (точение наружной поверхности), растачивание (точе­ние внутренней поверхности), подрезание торца, снятие фаски, отрезание, резьбонарезание, сверление, накатывание (см. тему 10) и др.

    Технологическое оборудование

Универсальный токарно-винторезный станок модели 1К62 показан на рис. 2.1. Станина 1 является базой для всех остальных узлов станка. В передней бабке 3 находится коробка скоростей, которая служит для изменения частоты вращения шпинделя - главного вала станка. На правом фланце шпинделя для закрепления заготовки и передачи на нее крутящего момента установлен патрон 15.

Коробка подач 2 позволяет изменять скорости вращения ходового вала 13 и ходового винта 12, что обеспечивает продольную и поперечную подачи режущего инструмента.

Суппорт 8 состоит из продольного 4, поперечного 7 и верхнего 6 суппортов, а также четырехпози­ционного резцедержателя 5. Суппорт 8 перемещается по направляющим 11 станины, что обеспечивает движение резца вдоль оси вращения заготовки. Поперечный суппорт перемещает резец по направляю­щим продольного суппорта перпендикулярно оси вращения заготовки. Между верхним и поперечным суппортами имеется поворотная плита, которая позволяет устанавливать верхний суппорт под углом к линии центров станка (линия, проходящая через ось вращения шпинделя и ось центра задней бабки 10).

В фартуке 14 смонтированы механизмы, которые преобразуют вращательное движение ходового ва­ла 13 (или ходового винта 12) в поступательное движение продольного и поперечного суппортов (про­дольное и поперечное движения подач). Ходовой винт 12 работает лишь при нарезании резьб резьбовы­ми резцами.

В корпусе задней бабки 10 в осевом направлении перемещается пиноль 9. В пиноли устанавливается центр с коническим хвостовиком, поддерживающий заготовку, или режущий (осевой) инструмент для обработки отверстий. Щиток 16 защищает работающего от летящей при резании стружки.

    Установка заготовок

Заготовки на станке устанавливают с помощью патронов или в центрах с поводковой планшайбой (рис. 2.2). Для закрепления заготовок, у которых отношение длины к их диаметру Ь/А < 4, применя­ют самоцентрирующие трехкулачковые (см. рис. 2.2, а), четырехкулачковые (несамоцентрирующие) и цанговые патроны.

Рис. 2.2

Заготовки с соотношением Ь/А > 4 устанавливают в центрах с поводковой планшайбой. В этом случае вращение со шпинделя на заготовку передается поводковой планшайбой с пальцем, закрепленной на фланце шпинделя станка (рис. 2.2, б), и поводковым хомутиком (см. рис. 2.2, в), закрепленным на заготовке.

Центры устанавливают в конические отверстия шпинделя станка и пиноли задней бабки. По кон­струкции и назначению различают следующие типы центров (рис. 2.3):

    упорный (см. рис. 2.3, а) - используют при обтачивании цилиндрических поверхностей;

    срезанный (полуцентр) (см. рис. 2.3, б) - применяют для обработки торца заготовки;

    с шариковой опорой (см. рис. 2.3, в) - предназначен для обтачивания конической поверхности способом смещения задней бабки;

    обратный (см. рис. 2.3, г) - используют для установки заготовок малых диаметров (до 4 мм);

    вращающийся (см. рис. 2.3, б) - предназначен для установки заготовок с большим сечением сре­заемого слоя (когда в процессе резания возникают значительные силы резания), а также для обработки заготовок с высокой частотой вращения шпинделя.

Для закрепления в центрах на заготовке необходимо предусматривать стандартные центровые отвер­стия (рис. 2.3, е).

д

Рис. 2.3

При обработке нежестких заготовок {Ь/д, > 10) применяют люнеты, предназначенные для созда­ния дополнительной опоры в целях предотвращения прогиба под действием сил резания. Неподвижные люнеты устанавливают на направляющих станины, подвижные - на продольном суппорте.

    Инструмент для токарных работ

На токарных станках используют токарные резцы, осевой инструмент (сверла, зенкеры, развертки и другие инструменты, назначение и классификация которых рассмотрены при изучении темы 6), а также инструмент для обработки поверхностей без снятия стружки (см. тему 10).

Токарные резцы по назначению делятся на проходные, подрезные, отрезные, фасонные, расточные, контурные и др. В табл. 2.1 показаны основные типы токарных резцов.

Проходные резцы по конструкции подразделяют на прямые, упорные, отогнутые, а по расположению главной режущей кромки - на правые и левые. Режущая кромка правого проходного резца расположена так, что она может срезать с заготовки материал при перемещении резца справа налево, а левого про­ходного резца - слева направо. Проходные резцы применяют в основном для точения цилиндрических и конических поверхностей. Проходной отогнутый резец можно использовать для подрезания торца, а проходной упорный - для точения ступенчатого вала. Подрезные токарные резцы предназначены толь­ко для обработки торцовых поверхностей.

Отрезными резцами отрезают готовое изделие (деталь от заготовки). Фасонные резцы, предназна­ченные для обработки фасонных поверхностей, рассматриваются при изучении темы 3, а резьбовые - темы 4. Расточные резцы служат для растачивания сквозных и глухих отверстий в заготовках (отливках или поковках), имеющих отверстия; в сплошных заготовках отверстия получают сверлением спиральны­ми сверлами, а затем обрабатывают зенкерами и развертками (см. тему 6), а также расточными резцами.

    Кинематические методы формообразования поверхностей точением

Поверхности вращения получают перемещением образующей линии по направляющей, которая представляет собой окружность (табл. 2.2). Образующая линия может быть любой формы и распола­гаться произвольно относительно направляющей.

При точении направляющая окружность всегда воспроизводится за счет вращательного движения заготовки, а образующая линия воспроизводится перемещением инструмента. Для формообразования точением используют два кинематических метода: следов и копирования или их сочетание (например, при нарезании резьбы).

При обработке по методу следов образующая воспроизводится траекторией вершины токарного рез­ца при его движении относительно заготовки (см. табл. 2.2) по прямой линии.

При обработке по методу копирования образующая повторяет форму и размеры главной режущей кромки инструмента на обрабатываемой поверхности заготовки.

Способом копирования обрабатывают короткие поверхности деталей любой формы. Способ следов применяют для точения поверхностей вращения любой формы без ограничения длины обработки.

    Какие виды работ выполняют на токарных станках?

    Какие движения заготовки и инструмента используют при формообразовании поверхностей точе­нием?

    Поясните сущность кинематических методов формообразования следов и копирования.

    Перечислите основные узлы токарно-винторезного станка.

    Какие типы инструментов используют при токарной обработке?

    Перечислите способы закрепления заготовок и приспособления, применяемые для этой цели.

ТемаЗ. ОБРАБОТКА КОНИЧЕСКИХ И ФАСОННЫХ ПОВЕРХНОСТЕЙ

Цель - изучение технологических возможностей способов обработки конических и фасонных по­верхностей на токарно-винторезном станке, используемых режущих инструментов; приобретение навы­ков наладки станка и самостоятельной работы на нем.

    Способы обработки конических поверхностей

    Режущий инструмент

    Характеристика способов обработки конических поверхностей

    Обработка фасонных поверхностей Вопросы для самопроверки

    Способы обработки конических поверхностей

Основные геометрические параметры конуса (рис. 3.1): В и (1 - диаметры оснований конуса, мм; I - длина конуса (рас­стояние между основаниями), мм; а - угол уклона конуса, град; 2а - угол конуса, град.

Обработка конических поверхностей точением на токарно-винторезных станках обеспечивается вращением за­готовки (главное движение резания В г ) и перемещением ин­струмента (движение подачи Вд). В зависимости от способа подача может быть продольной, поперечной, наклонной (табл. 3.1). При одновременном равномерном движении резца па­раллельно и перпендикулярно оси вращения заготовки также будет формироваться коническая поверхность. Этот способ используют на токарных станках с числовым программным управлением (ЧПУ).

Таблица 3.1

обработки

конических

поверхностей

Вид конической поверхности

Параметры конуса

Способ установки заготовки

Вид подачи

1, мм

Широким резцом

Наружные

Внутренние

Трехкулачковый

Продольная или поперечная

Смещением зад­ней бабки

Наружные

Любая (в пределах расстояния между центрами станка)

В шариковых цен­трах

Продольная

Поворотом верх­него суппорта

Наружные

Внутренние

Не более длины хода верхней ка­ретки суппорта

Трехкулачковый

Наклонная (пода­ча резца вручную)

С использованием копирной линейки

Наружные

Внутренние

Любая (в пределах длины линейки)

Трехкулачковый патрон или в центрах

Наклонная (сло­жение продольной и поперечной)

Коническими зен­керами или раз­вертками

Внутренние

Любая (в пределах длины инструмен­та)

Трехкулачковый

Продольная

    Режущий инструмент

Наружные конические поверхности обрабатывают проходными резцами, внутренние - расточны­ми (см. тему 2). Чтобы получить конические отверстия, в сплошной заготовке предварительно сверлят цилиндрическое отверстие. Затем в зависимости от размера и требуемой точности его обрабатывают зенковками, зенкерами, развертками (см. тему 6), а также расточными резцами.

    Характеристика способов обработки конических поверхностей

Широким резцом. Формообразование конических поверхностей широким резцом (рис. 3.2) осуще­ствляется методом копирования. Резец устанавливают в резцедержателе так, чтобы главный угол в плане <р был равен углу уклона конуса а. Длина главной режущей кромки лезвия должна быть на 1... 3 мм боль­ше длины образующей конической поверхности. Резцу сообщают движение подачи в поперечном или продольном направлении. Способ наиболее широко используют для снятия фасок.

Поворотом верхнего суппорта . Формообразование конических поверхностей поворотом верхнего суппорта (рис. 3.3) осуществляется методом следов. Верхний суппорт поворачивают под углом а к линии центров станка. Движение подачи Вд н (наклонная подача) задают резцу вручную вращением рукоятки /. Ось вращения заготовки совпадает с линией центров станка.

С использованиер копирной линейки. Формообразование конических поверхностей с использо­ванием копирной линейки (рис. 3.4) осуществляется методом следов. К станине станка крепят плиту 1 с копирной линейкой 2, по которой перемещается ползун 3, соединенный с поперечным суппортом станка 5 тягой 4. При перемещении продольного суппорта резец, установленный в резцедержателе на суппорте 5, получает два движения: продольное от продольного суппорта и поперечное от копирной линейки 2. В результате сложения двух движений подач резец перемещается вдоль образующей обрабатываемой по­верхности под углом а к линии центров станка. Угол поворота линейки, соответствующий углу уклона конуса, задают по делениям на плите 1. Этот способ обеспечивает высокую точность обработки.

Смещением задней бабки в поперечном направлении. Формообразование конических поверхно­стей смещением задней бабки в поперечном направлении (рис. 3.5) осуществляется методом следов. Заготовку устанавливают в центрах под углом а к линии центров станка так, чтобы ее ось вращения совпадала с осью конической обрабатываемой поверхности. Для этого заднюю бабку станка смещают в поперечном направлении по ее направляющим на величину Н = 11% а, где I - длина конуса. При этом образующая конической поверхности будет параллельна линии центров станка. Обработку проводят, ис­пользуя движение подачи резца в продольном направлении. Способ не обеспечивает высокую точность обработки.

Рис. 3.4

Рис. 3.5

Коническим зенкером или разверткой. Формообразование коническим зенкером или разверткой осуществляется методом следов. В этом случае инструмент закрепляют в пиноли задней бабки. От ма­ховика задней бабки инструмент получает (вручную) движение подачи в продольном направлении.

    Обработка фасонных поверхностей

К фасонным поверхностям относят поверхности, образующая которых может иметь любую форму, отличную от прямой линии. Фасонные поверхности тел вращения обрабатывают точением.

Фасонные поверхности длиной не более 50 мм обрабатывают специальными фасонными резцами, профиль которых определяет форму образующей. Формообразование поверхности осуществляется ме­тодом копирования. При этом режущий инструмент получает поперечное движение подачи.

По конструкции фасонные резцы подразделяют на следую­щие типы:

Круглые и призматические фасонные резцы закрепляют в рез­цедержателе в специальных державках, причем круглый резец устанавливают выше линии центров станка на величину к (см. рис. 3.7).

Длинные фасонные поверхности обрабатывают проходны­ми резцами с помощью фасонного копира, который аналоги­чен копирной линейке для обработки конических поверхностей (рис. 3.9). Формообразование поверхности осуществляется мето­дом следов.

При перемещении суппорта в продольном направлении Б $ П р резец получает движение в поперечном направлении от ко­пира. В результате сложения двух этих движений формируется фасонная поверхность заготовки.

Обработку фасонных поверхностей можно выполнить контурными резцами (см. тему 2, табл. 2.1) на токарных станках с ЧПУ.

Рис. 3.7

Вопросы для самопроверки

    Какими способами получают наружные конические поверхности на токарно-винторезном станке?

    Какими способами можно обработать на токарно-винторезном станке внутреннюю коническую поверхность?

Рис. 3.9

    Каким способом обрабатывают наружную коническую поверхность с углом конуса при вершине 60° и длиной образующей 100 мм?

    Какие инструменты используют для обработки наружной и внутренней конических поверхностей?

    Назовите способы обработки фасонных поверхностей и применяемый инструмент.

    Какими методами формообразования получают конические и фасонные поверхности точением?

Т е м а 4. РЕЗЬБОНАРЕЗАНИЕ

Цель - изучение технологических возможностей способов нарезания резьб на токарно-винторезном станке, применяемого резьбонарезного инструмента; получение практических навыков наладки стан­ка на нарезание резьбы и самостоятельной работы на нем.

    Характеристика резьбонарезания. Виды и назначение резьбы

    Кинематика формообразования резьбы

    Кинематическая схема токарно-винторезного станка модели 16К20

    Наладка станка на нарезание резьбы Вопросы для самопроверки

    1. Характеристика резьбонарезания. Виды и назначение резьбы

Резьбонарезаше - вид лезвийной обработки резанием, заключающийся в образовании резьбы. Резьбой называют винтовую поверхность определенного профиля, образованную на наружной или внутренней поверхности заготовки. При этом заготовка представляет собой тело вращения (цилиндри­ческой или конической формы).

Рис. 4.1

Резьбы различают по следующим признакам:

    по расположению - наружные и внутренние;

    по профилю - треугольные (рис. 4.1, а, б), трапецеидальные (рис. 4.1, в), прямоугольные (рис. 4.1, г), упорные (рис. 4.1, д) и круглые (рис. 4.1, е);

    по шагу - метрические (шаг Р задается в мм), дюймовые (шаг Р задается числом ниток на дюйм; 1 дюйм = 25,4 мм) и модульные - шаг резьбы Р = пт, где т - модуль зубчатого колеса, мм

(см. тему 8). Метрическая резьба имеет треугольный профиль с углом при вершине, равным 60°, дюймо­вая резьба - 55°, модульная резьба имеет трапецеидальный профиль с углом при вершине, равным 40°;

    по числу винтовых канавок - однозаходные и многозаходные;

    по направлению винтовых канавок - правые и левые;

    по назначению - крепежные и ходовые.

Для получения неподвижных разъемных соединений применяют крепежные резьбы (треугольного профиля). Метрическую резьбу нарезают на крепежных деталях (винт, болт, гайка и др.) и на мелких ходовых винтах, дюймовую -- в трубных соединениях. Для получения подвижных соединений приме­няют ходовую резьбу. Прямоугольную и трапецеидальную резьбы используют в ходовых винтах станков и других механизмах. Круглую резьбу применяют в шариковых винтовых передачах; упорную - в дом­кратах и винтовых прессах; модульную - в червячных винтовых передачах.

      Кинематика формообразования резьбы

Резьбонарезание осуществляют сочетанием двух кинематических методов: копирования и следов (см. тему 2, табл. 2.2).

Профиль резьбы создается копированием профиля режущей части инструмента, а винтовая линия образуется по методу следов при сочетании вращательного движения заготовки (главное движение ре­зания Р) г) и поступательного движения резца (продольная подача Дд- пр) вдоль ее оси. Эти движения необходимо точно согласовать: за один оборот заготовки инструмент должен переместиться на шаг на­резаемой однозаходной резьбы Р н (одна винтовая линия на заготовке) или ход многозаходной резьбы (ход резьбы равен произведению шага Р н многозаходной резьбы на число заходов К). Данное условие обеспечивается кинематической связью шпинделя станка и ходового винта (рис. 4.2).

Р х - та.- ходгтт) штш Р и ■> ите тгрез&щШ резьбы к" - чпе.т шх<м)т резьбы

Рис. 4.2

На токарно-винторезных станках резьбу можно нарезать различными инструментами: резьбовыми резцами, метчиками, плашками и др.

Резьбонарезание токарными резьбовыми резцами является универсальным способом, позволяющим нарезать резьбу любого вида.

Схемы нарезания наружной (а ) и внутренней (б) резьбы резьбовыми резцами показаны на рис. 4.3.

Метчик и плашка используются для нарезания резьбы треугольного профиля (рис. 4.4). При нареза­нии резьбы плашкой (см. рис. 4.4, а) или метчиком (рис. 4.4, б) настройка станка ограничивается установ­кой заданной частоты вращения заготовки. Метчик и плашку устанавливают в специальных держателях. В начальный момент инструмент получает принудительную продольную подачу, которая выполняется вручную, на длину двух-трех резьбовых ниток. Дальнейшее перемещение инструмента происходит за счет самозавинчивания.

Рис. 4.4

      Кинематическая схема токарно-винторезного станка модели 16К20

На станке можно нарезать все виды резьб, рассмотренные выше. При нарезании резьбы резьбовым резцом в станке используют цепь главного движения и винторезную цепь, а при нарезании метчиком и плашкой - только цепь главного движения, так как подача инструмента осуществляется самозавинчи- ванием.

На рис. 4.5 показана часть кинематической схемы станка, участвующей в передаче главного дви­жения резания на заготовку, а на рис. 4.6 - часть кинематической схемы, обеспечивающей движение подачи инструменту при нарезании резьбы.

Рис. 4.5

Рис. 4.6

Цепь главного движения (см. рис. 4.5) задает вращательное движение шпинделю станка (вал VI). От электродвигателя М (ЛГ = 10 кВт, п = 1460 мин -1) через клиноременную передачу и коробку скоростей шпиндель может получить 24 различных значения частоты вращения в диапазоне 12,5... 1600 мин -1 (табл. 4.1) и при этом иметь прямое и обратное вращение.

Винторезная цепь (цепь продольной подачи) согласует вращательное движение заготовки и посту­пательное перемещение резьбового резца вдоль оси заготовки так, чтобы за один оборот заготовки ре­зец переместился на шаг (если резьба однозаходная) или на ход (если резьба многозаходная). Началь­ным звеном этой цепи является шпиндель станка, далее движение идет через коробку подач. Конечным звеном является ходовой винт станка с шагом Р х - 12 мм (см. рис. 4.2). Настройку на шаг нареза­емой резьбы проводят с помощью гитары сменных зубчатых колес (К, Ь, М, У) и коробки подач (см. рис. 4.6).

Таблица 4.1

Положение рукоятки

Частота вращения шпинделя при передаточном отношении перебора скоростей, об/мин

Уравнение кинематического баланса винторезной цепи имеет вид

60 30 25 К М. п 60 " 25 " 45 " Т " ~

где г к. п - передаточное отношение коробки подач. Это уравнение используется при выводе расчетных формул по подбору сменных колес гитары для резьб с шагом Р н , равным табличному Р Т или отличаю­щимся от него.

Таблица 4.2

п шп, об/мин

Значение шага Р т метрической резьбы, мм, при положении рукояток коробки подач (см. станок)

Коробка подач (см. рис. 4.6) имеет две основные кинематические цепи. Одна цепь служит для наре­зания дюймовых резьб. При этом движение на ходовой винт передается, когда муфты Мг, Мз, М 4 и Ме выключены, а муфта М5 включена:

28 38 25 / 30 35 28\ 30 18

Пвал1Х ‘ 28 ’ 34 " 30 \ И 48’ 28’ 35 у 33 ’ 45

Другая цепь предназначена для нарезания метрических и модульных резьб. При этом муфты М2 и Мб выключены, а муфты М3, М4 и М5 включены:

28 30 /42 28 35\ 18 / 28\ 15

п В ал1Х " 28 " 25 \ 30’ 35 5 28) 45 35) 48

При нарезании метрических и дюймовых резьб устанавливают сменные зубчатые колеса гитары

Т " N ~ 86 ’ 64’

а при нарезании модульных резьб

К М _ 60 86 Т ‘ N “ 73 " 36*

При нарезании резьб с шагом Р н, отличающимся от табличного Р т , сменные зубчатые колеса гитары подбирают расчетным путем. Подбор колес проводят по заранее выбранному значению передаточного отношения коробки подач (примем передаточное отношение коробки подач равным единице).

      Наладка станка на нарезание резьбы

Наладку станка на резьбонарезание осуществляют в следующем порядке:

    п = и-НЮО-60/^мин -1 , где V - заданная скорость резания, м/с; <7 - диаметр заготовки, мм. Полученное значение п корректи­руем по табл. 4.1;

    по табл. 4.2 определяем соответствие заданного шага нарезаемой резьбы табличному значению;

    если заданный шаг соответствует табличному, то нарезать резьбу можно без специальной настрой­ки, пользуясь указаниями на положение рукояток коробки подач, находящимися на станке;

    если заданный шаг не соответствует табличному (см. табл. 4.2), то для нарезания резьбы необхо­димо выполнить специальную настройку, применяя расчетную формулу для определения передаточного отношения гитары сменных колес.

Например, для метрической резьбы расчетная формула имеет вид

К М __ 5 Рп Т " лГ “ 8 ~Р~ Т "

где Р н - шаг нарезаемой резьбы, Р г - табличное значение шага, ближайшее к шагу нарезаемой резьбы.

По результатам расчета сменные колеса выбирают из следующего набора: 36, 40, 44, 45, 46, 48, 50, 52, 54, 56, 57, 60, 64, 65, 66, 70, 72, 73, 75, 80, 86, 90, 127 (все зубчатые колеса имеют одинаковый модуль т = 2 мм).

Нарезание резьбы в зависимости от шага Р н проводят за несколько проходов.

Различают четные и нечетные резьбы. Четной называют резьбу, у которой отношение шага (хода) к шагу ходового винта станка (или наоборот) является целым числом, а нечетной - ту, у которой указан­ное отношение дробное. Это разделение определяет приемы настройки станка, которые используются при нарезании резьбы.

При нарезании четной резьбы по окончании прохода резец перемещают в исходное положение вруч­ную или механически (ускоренно) при разомкнутой разъемной гайке ходового винта. Кинематическая связь шпинделя и ходового винта обеспечивает возможность включения разъемной гайки ходового вин­та при любом положении резца относительно резьбы и гарантирует точное попадание его в нарезаемую канавку резьбы.

При нарезании нечетной резьбы после каждого рабочего прохода резец отводят от заготовки в попе­речном направлении, переключают суппорт на обратный ход и, не размыкая разъемную гайку, отводят резец в исходное положение. Затем резец устанавливают на заданную глубину резания и выполняют следующий проход. >

Рассмотрим наладку станка на примере.

Пример.

Требуется нарезать метрическую резьбу с шагом Р н = 5,5 мм. Наружный диаметр заготовки Р) - 40 мм. Материал заготовки - конструкционная сталь. Материал резца - быстрорежущая сталь. Скорость резания у = 0,33 м/с.

Решение".

    по заданной скорости резания рассчитываем частоту вращения шпинделя:

п шп = 1000 60 уЦпИ) = 1000 60 0,33/(3,14 40) = 159 мин" 1 .

Полученное значение п шп = 159 мин -1 корректируем по табл. 4.1. Для наладки станка принимаем ближайшее к расчетному табличное значение - п шп = 160 мин -1 ;

К М_ 5 РЪ _ 5 55 _ 5 55 _ 5 И _ 50 66 Ь N ~ 8 ‘ Р т ~ 8 " 6 ” 8 ’ 60 ~ 8 " 12 “ 80 " 72"

Числа зубьев сменных колес выбираем из набора сменных колес: р ис> 4.7

К = 50, Ь = 80, М = 66, N = 72.

Проверяем условие сцепляемости подобранных сменных зубчатых колес (рис. 4.7):

К + Ь>М + 15;

^ 2 ’

М + N > Ь + 15.

Из конструктивных соображений зубчатые колеса гитары должны иметь следующие значения числа зубьев: К < 88, N < 73; К + Ь + М > 260.

    подобранные расчетным путем сменные колеса устанавливаем на станок. При этом коробку подач настраиваем с помощью рукояток на шаг Р т = 6 мм.

Вопросы для самопроверки

    Какие виды резьб можно нарезать на токарно-винторезных станках?

    Какую резьбу называют четной и какую нечетной?

    Назовите приемы настройки станка на нарезание четной и нечетной резьб.

    Какой режущий инструмент используют при нарезании наружных и внутренних резьб?

    Опишите кинематику нарезания резьб плашками и метчиками.

    Укажите назначение цепи главного движения резания.

    Укажите назначение цепи подачи при нарезании резьб.

    Как осуществляют настройку станка на нарезание резьбы с шагом, равным табличному (см. табл. 4.2)?

    Как осуществляют настройку станка при нарезании резьб с шагом, отличающимся от табличного?

    Как подбирают сменные зубчатые колеса гитары?

Т е м а 5. МНОГОИНСТРУМЕНТАЛЬНАЯ ОБРАБОТКА ЗАГОТОВОК

Цель - изучение технологических возможностей многоинструментальной обработки на токарно­револьверном станке, основных узлов станка и их назначения; приобретение практических навыков на­ладки станка и самостоятельной работы на нем.

    Характеристика многоинструментальной обработки

    Назначение и особенности конструкции токарно-револьверного станка

    Основные узлы токарно-револьверного станка модели 1К341

    Установка заготовок и режущих инструментов

    Наладка станка

Вопросы для самопроверки

Передний угол оказывает большое влияние на виброустойчивость резца, которая резко снижается с уменьшением его величины (от нуля и ниже). Поэтому во избежание появления вибраций необходимо принимать передний угол 15-25°, причем обычно он делается равным углу врезания пластинки.

В целях обеспечения завивания стружки и благоприятного отвода ее, рекомендуется переднюю поверхность резца делать или криволинейной, или с лункой. Для упрочнения главной режущей кромки целесообразно предусмотреть ленточку шириной 0,2-0,3 мм с отрицательным передним углом -3 — 5°. Однако не следует забывать, что такая ленточка допустима только при наличии достаточно жестких условий работы резца. 15 случае, если условия жесткости не позволяют применять упрочняющую ленточку с отрицательным углом, рекомендуется делать ее с положительным углом 5° для твердых и 10° для мягких и вязких материалов.

Упрочняющая ленточка при небольшой ее ширине не оказывает влияния на величину сопротивления резанию, так как центр давления стружки выходит за границу ленточки в зону криволинейной передней поверхности, снабженной большим передним углом.

Рисунок 1 — Углы отрезного резца

В практике встречаются отрезные резцы, у которых передняя поверхность оформляется в виде двухгранного угла (рис. 1, б). Плоскости его наклонены к опорной плоскости под углом μ = 10÷15°. Линия пересечения этих плоскостей расположена параллельно опорной плоскости. Такая конструкция способствует лучшему врезанию резца в заготовку.

Задний угол

Задний угол главной режущей кромки принимается равным 8º но пластинке и 12° по державке.

У резца различают главные углы, вспомогательные углы и углы в плане.

Главные углы измеряются в сечении главной секущей плоскости А-А (рис. 13), которая перпендикулярна к проекции главной режущей кромке на основную плоскость.

g - главный передний угол – угол между передней поверхностью и плоскостью, перпендикулярной к плоскости резания.

Рисунок 7 – Элементы резца Рисунок 8 – Поверхности и плоскости

при токарной обработке

Рисунок 9 – Углы токарного резца

С увеличением угла g инструмент легче врезается в материал, снижается сила резания и расход мощности, повышается качество обрабатываемой поверхности. С другой стороны чрезмерное увеличение угла g снижает прочность главной режущей кромки и увеличивает ее износ. Величина g обычно составляет 0 - 15 о, а при обработке твердых материалов и ударных нагрузках передний угол может быть отрицательным и достигать – 10 о.

a  – главный задний угол – угол между главной задней поверхностью и плоскостью резания. Угол a предназначен для уменьшения трения между главной задней поверхностью и поверхностью резания, что снижает износ инструмента. Чрезмерное увеличение угла приводит к снижению прочности режущего лезвия. Обычно он составляет 6 – 12 о.

b угол заострения (угол клина), находится между передней и главной задней поверхностью резца (a +b +g = 90 о).

d - угол резания , находится между передней поверхностью и плоскостью резания (d = a + b ).

Вспомогательные углы определяются в сечении вспомогательной секущей плоскостью Б-Б, которая проходит перпендикулярно к проекции вспомогательной режущей кромки на основную плоскость.

a 1 - вспомогательный задний угол , который находится между вспомогательной задней поверхностью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно основной плоскости. Угол уменьшает трение между вспомогательной задней поверхностью резца и обработанной поверхностью заготовки. Он составляет обычно 3 – 5°.

К вспомогательным углам относят обычно угол наклона главной режущей кромки l , который определяется между главным режущим лезвием и плоскостью, проходящей через вершину резца параллельно основной плоскости (рис. 14). Угол определяет направление схода стружки и колеблется от + 5 о до - 5 о. Если l = 0, стружка сходит по оси резца, если l < 0 – стружка сходит в направлении подачи, при l > 0 стружка сходит в направлении, обратном направлению подачи. Направление схода стружки существенно при работе на станках-автоматах. С увеличением l качество обработанной поверхности ухудшается.

Рисунок 10 – Углы наклона главной режущей кромки

Углы в плане определяются в основной плоскости на виде сверху.

j - главный угол в плане - угол между проекцией главной режущей кромки на основную плоскость и направлением подачи. С уменьшением j  шероховатость обработанной поверхности уменьшается. Одновременно уменьшается толщина и увеличивается ширина срезаемого слоя, что снижает износ инструмента, однако возможно возникновение вибрации в процессе резания и снижение качества обработанной поверхности. Угол j изменяется в широком диапазоне от 0 о до 95 о.

j 1 вспомогательный угол в плане – угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением, обратном движению подачи. С уменьшением угла j 1 шероховатость уменьшается, увеличивается прочность вершины резца и снижается его износ. У проходных резцов угол j 1 составляет обычно 10 о -30 о.

e - угол при вершине - угол между проекцией главной и вспомогательной режущих кромок на основную плоскость (j +j 1 +e =180 о).

Из рассмотренных углов только b , l иe являются постоянными и не зависят от установки резца. Остальные углы изменяются по величине в зависимости от положения вершины резца относительно центров станка (a, a 1 , j ) или поворота резца в резцедержателе (j, j 1 ).

Режущее лезвие резца не всегда прямолинейно. Для обработки фасонных поверхностей, а иногда и в других случаях, главное режущеелезвие делается криволинейным.

Передняя поверхность резца может иметь три формы (рис. 15): плоскую без фаски, рекомендуемую при обработке серого чугуна, однако она может быть использована и для других материалов (см. рис. 15 а); плоскую с фаской - при токарной обработке стали с большими подачами (см. рис. 15 б); криволинейную с фаской - для резцов всех типов при обработке пластичных материалов (см. рис. 15 в).

Форма головки резца, величина углов, форма передней поверхности и режущего лезвия, размеры сечения резца существенно отражаются на процессе резания. Они влияют на величину сил, температуру резца, что, в свою очередь, должно учитываться при определении режимов резания.

Рисунок 11 – Форма передней поверхности резца