Аналоговые схемы. Аналоговая интегральная схема. Специфические названия микросхем

Аналоговый компьютер - аналоговая вычислительная машина (АВМ), это компьютер непрерывного действия, обрабатывающий аналоговые данные (непрерывную информацию).

БСЭ дает такое определение аналоговой вычислительной машины.
Аналоговая вычислительная машина (АВМ), вычислительная машина, в которой каждому мгновенному значению переменной величины, участвующей в исходных соотношениях, ставится в соответствие мгновенное значение другой (машинной) величины, часто отличающейся от исходной физической природой и масштабным коэффициентом. Каждой элементарной математической операции над машинными величинами, как правило, соответствует некоторый физический закон, устанавливающий математические зависимости между физическими величинами на выходе и входе решающего элемента (например, законы Ома и Кирхгофа для электрических цепей, выражение для эффекта Холла, лоренцовой силы и т. д.).

Стоит отметить, что аналоговый компьютер бывает не только электрический, но и механический, гидравлический и даже пневматический.

Несмотря на кажущийся анахронизм, аналоговые вычисления широко используются в современной жизни. Автомобильная автоматическая трансмиссия является примером гидромеханического аналогового вычислителя, в котором при изменении вращающего момента жидкость в гидроприводе меняет давление, что позволяет получить изменение коэффициента передачи.

Аналоговая обработка электрических сигналов занимает важное место в промышленной электронике. Большинство типов первичных преобразователей физических величин являются источниками аналоговых сигналов, а многие исполнительные элементы в объектах управления управляются непрерывно изменяющимся электрическим током. Даже системы управления, основой которых являются цифровые вычислительные комплексы, не могут отказаться от аналоговой обработки сигналов и сопрягаются с объектами управления и датчиками с помощью аналоговых и аналого-цифровых устройств.

В связи с объемностью материала, который хотелось бы представить, я планирую написать цикл статей. Предлагаю на суд читателя первую часть, где будет кратко рассказана история создания операционного усилителя в том виде, как мы его знаем.

Часть первая. Краткая история создания операционного усилителя.

История использования АВМ насчитывает несколько тысячелетий. Интересующиеся могут начать свои поиски со статьи в википедии .

Но в данной статье я остановлюсь лишь на датах, непосредственно качающихся истории создания электронного операционного усилителя. И начну я с даты, которая на первый взгляд, никак не относится к теме статьи.

1614 г. Шотландский математик Джон Непер публикует «Канон о логарифмах», который начинался так: «Осознав, что в математике нет ничего более скучного и утомительного, чем умножение, деление, извлечение квадратных и кубических корней, и что названные операции являются бесполезной тратой времени и неиссякаемым источником неуловимых ошибок, я решил найти простое и надежное средство, чтобы избавиться от них» .

Позволю себе напомнить про некоторые свойства логарифмов. Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам выполнить потенцирование, то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются.
В виде формул это выглядит так:

lg(xy) = lg(x) + lg(y) для умножения
lg(x/y) = lg(x) - lg(y) для деления

Непер же создал первые таблицы логарифмов тригонометрических функций.
Школьники докомпьютерной эпохи должны помнить, что такое четырехзначные таблицы Брадиса.

1622 г. Английский математик-любитель Уильям Отред создал, пожалуй, один из самых успешных аналоговый вычислительный механизм - логарифмическую линейку.

Любители мастерить руками могут собрать свой карманный аналоговый калькулятор по этим и научиться им пользоваться до декабря 2012. Вдруг пригодится...

Но всё же я пропущу историю развития не электронных аналоговых вычислительных машин и перейду непосредственно к теме нашей статьи.

1904 г. В ноябре 1904 года Джон Амброз Флеминг изобрёл выпрямитель на двухэлектродной электронной лампе, который он назвал осцилляторный вентиль. Изобретение носит также названия: лампа с термокатодом, вакуумный диод, кенотрон, термоионная лампа, вентиль Флеминга.

1947 г. В Колумбийском университете Нью-Йорка в ходе проведения исследовательских работ по совершенствованию аналоговых вычислений для военных целей возник термин операционный усилитель (ОУ). Дизайн ОУ был разработан Лоебом Джули (Loebe Julie). У этой схемы было два главных новшества. Были применены средства для уменьшения дрейфа нуля усилителя и, что более важно, это был первый дизайн операционного усилителя, который будет иметь два входа (одно инвертирование, другое неинвертирование).

1953 г. В 1946 г. После увольнения из армии Джордж А. Филбрик создал компанию имени себя George A. Philbrick Researches, Inc., (GAP/R) и стал занимался созданием операционных усилителей. Его работы сыграли важную роль в развитии ОУ.

Вскоре, в январе 1953 г , был выпущен первый коммерческий ОУ K2-W . При этом его стоимость была около $20. K2-W использовал два двойных триода 12AX7 и был упакован в стандартный восьмиштырьковый разъем. ОУ был построен на дизайне Лоеба Джули. Работая на напряжении ±300В ОУ мог работать с напряжениями на выходе и входе до ±50В и имел коэффициент усиления более 15000.
Если читателю придется создавать схемы на этом ОУ, то по ссылкам он может изучить даташит страница 1 , страница 2 . Для остальных я просто приведу рисунок 4.


Рис.4. K2-W. Фотография и электрическая принципиальная схема.

50 гг. Ламповые усилители совершенствовались. Улучшались схемотехнические решения, увеличивалось усиление, точность, уменьшалось энергопотребление. Но уже к началу 60-х годов начался закат эры теплого лампового операционного усилителя и на сцену вышел транзистор и в последствии, интегральные схемы.


Рис. 5. Макет первой ИС Килби.


Рис. 6. Илюстрация к патенту Нойса.

1961 г. Как бы то ни было, в результате, в 1961 году были произведены первые интегральные схемы операционных усилителей. Это был GAP/R P45 стоимостью около $120. Данные операционные усилители были фактически небольшими платами с краевыми разъемами. Как правило, они комплектовались из тщательно отобранных резисторов для того, чтобы улучшить характеристики ОУ, таких как напряжение смещения и дрейфа.

ОУ GAP/R P45 имел усиление 94 дБ и питался напряжением ±15V. ОУ должно было иметь дело с сигналами в диапазоне ±10V.
В последствии, эти напряжения стали своеобразным стандартом.


Рис. 7. ОУ GAP/R P45. Фотография и электрическая принципиальная схема.

1961 г. Джордж А. Филбрик создает схему варакторного мостового операционного усилителя.
В этой схеме, напряжение переменных конденсаторов (varactors) используются в входном каскаде операционного усилителя. В результате использования варакторного моста был достигнут самый низкий входной ток любого ОУ. Даже меньше чем у ламп.

Рис. 8 иллюстрирует в виде блок-схемы варакторный мостовой ОУ. Существуют четыре основных компонента, передняя часть состоит из мостовой схемы и цепи высокочастотного генератора, усилителя переменного тока для усиления напряжения ошибки моста, синхронный детектор фазы для преобразования переменного тока ошибки для соответствующего постоянного тока ошибки, и наконец, выходной усилитель, обеспечивающий дополнительное усиление постоянного тока и нагрузки устройства.



Рис. 8. Блок-схема варакторного мостового операционного усилителя.
Схема работает следующим образом: небольшая ошибка напряжения постоянного тока Vin применяется к подобранным варакторным диодам D1 и D2 и вызывает дисбаланс моста переменного тока, который подается в усилитель переменного тока. Это напряжение переменного тока будет сдвинутым по фазе в зависимости от напряжения ошибки постоянного тока. Остальные части схемы усиливают и обнаруживают ошибку постоянного тока. Филбрик выпустил операционный усилитель GAP/R P2. Выпущенный в 1966 году модифицированный ОУ GAP/R SP2A мог усиливать входной ток порядка ±10pA (10 −12).

В 1965 г. Рэй Стейти Мэттью Лорбер создают Analog Devices, Inc. (ADI) . Вскоре, Льюис Р. Смит (Lewis R. Smith) создал варакторный усилитель модели 301, а также его правопреемников, модели 310 и 311. Эти проекты смогли добиться существенного повышения точности входных токов до ±10fA (10 −15) (примерно на 3 порядка ниже GAP/R P2). Интересно, 310 и 311 модели продавались по ценам порядка $75. Эти усилители и по сей день выпускаются в ограниченном количестве

1970 г. John Cadigan, работающий в ADI, создает высокоскоростной операционный усилитель. Отличительный способностью этого ОУ было использование полевых транзисторов во входном каскаде. ОУ был выполнен как гибридная интегральная схема. Ниже я приведу схему и фотографию более совершенного ОУ HQS-050 , выпущенного в 1977 году.


Рис. 13. HSQ-050. Схема электрическая принципиальная и фотография.

Думаю, что на этом стоит остановиться. И в качестве заключения приведу схему еще одного ОУ, который позволит оценить уровень схемотехники современных операционных усилителей.

Рис 14. AD549. Схема электрическая принципиальная.

Во второй части я кратко рассмотрю внутреннюю схемотехнику операционного усилителя.
Использование операционных усилителей в качестве элементов аналоговых вычислительных устройств я представлю в третьей части.

Список использованных источников

Основным источником для данной статьи явилась книга .
http://ru.wikipedia.org/wiki/
http://www.computer-museum.ru/
http://www.computerhistory.org/

Теги: Добавить метки

Электронные схемы могут выполнять непосредственно функциональные преобразования сигнала - усиление, сложение, умножение, деление, возведение в квадрат, суммирование, интегрирование, дифференцирование и другие. Каждый элемент предназначен для осуществления одной из частных операций, присущих данному узлу.

К числу наиболее часто применяемых функциональных элементов следует в первую очередь отнести схемы усилителей, содержащих ОУ.

Инвертирующий усилитель. Схема включения инвертирующего ОУ представлена на рис.7.5а. Входной сигнал U вх подается на инвертирующий вход ОУ, при этом с выхода ОУ на инвертирующий вход организована отрицательная обратная связь R 2 . Выходной сигнал U вых связан с входным сигналом U вх соотношением:

U вых /R 2 =-U вх /R 1 ,

а коэффициент усиления по напряжению равен:

К=-U вых / U вх =-R 2 /R 1 .

Не инвертирующий усилитель показан на рис.10.5б. Входной сигнал U вх подается на не инвертирующий вход, а инвертирующий соединен с общим проводом через сопротивление R 3 . Отрицательная обратная связь через сопротивление R 2 обеспечивает стабильную работу усилителя. Выходное напряжение определяется в соответствии с выражением:

U вых = U вх R 4 (1 + R 2 / R 1)/(R 3 + R 4).

Рисунок 7.5 – Функциональные элементы автоматики на операционном

усилителе.

На рис.7.5в. представлена схема дифференциального включения операционного усилителя, выходное напряжение которого пропорционально разности входных сигналов, поданных на инвертирующий и на не инвертирующий входы:

U вых = U 2 R 4 (1 + R 2 / R 1)/(R 3 + R 4) - U 1 (R 2 / R 1).

Схема дифференциального включения операционного усилителя имеет большие функциональные возможности по сравнению с другими, рассмотренными выше.

На рис.7.6. показан масштабирующий усилитель, который может применяться в качестве входного звена для ступенчатого регулирования, например, в регуляторе (путем ступенчатого регулирования коэффициента усиления).

Широко применяется суммирующий усилитель. Он может использоваться в качестве элемента-формирователя, реализующего геометрическое суммирование нескольких переменных напряжений.

Наиболее часто при реализации суммирующего усилителя используется инвертирующее включение ОУ, когда несколько входных напряжений U 1 , U 2 , U 3 , каждое через индивидуальный входной резистор R 1 , R 2 , R 3 , подаются на инвертирующий вход (рис.7.7).

Рисунок 7.6 – Масштабирующий усилитель.

В ОУ через резистор обратной связи протекает суммарный ток входов и с учетом нулевого напряжения на инвертирующем входе выходное напряжение равно

U вых = R 4 (U 1 + U 2 + U 3)/(R 1 +R 2 +R 3).

Рисунок 7.7 – Суммирующий усилитель.


Рисунок 7.8 – Интегрирующий элемент.

Интегрирующий элемент используется для интегрирования сигналов во времени в схемах вычислений, а также в качестве фильтров сигналов (рис.7.8). Его основной характеристикой является постоянная времени интегрирования t=R 1 C 1. Интегрирование входного сигнала во времени осуществляется на емкости C 1 , включенную в обратную связь ОУ.

Часто используется дифференцирующий элемент – для получения производной от входного сигнала (рис.7.9). На выходе этого элемента сигнал соответствует первой производной входного сигнала.

Рисунок 7.9 – Дифференцирующий элемент.

Компараторы. Компараторы – это устройства сравнения, сопоставления сигналов для определенного момента времени (рис.7.10). При каждом равенстве нулю разности двух входных сигналов выходное напряжение изменяется от нижнего (логический 0) до верхнего (логическая 1) предельного значения. Компараторы могут быть аналоговые и цифровые.

В аналоговых компараторах на входе сравниваются два аналоговых сигнала, а на выходе - логический сигнал.

В цифровых компараторах и на входе и на выходе присутствуют сигналы в цифровом виде.

Рисунок 7.10 – Аналоговый компаратор.

В аналоговом компараторе (рис.7.10а) операционный усилитель работает без обратной связи, поэтому имеет очень большой коэффициент усиления. На инвертирующий вход подается опорное напряжение U оп, величина которого может изменяться (рис.7.10б). На не инвертирующий вход подается анализируемый сигнал U x . Любое изменение разности входных напряжений вызывает скачок выходного напряжения U вых. Если U x >= U о , то на выходе ОУ 1 появляется логическая 1, если U x , то – логический 0.

Если U оп = 0, то такой компаратор называется нуль-органом.

Компараторы находят широкое применение в сравнивающих устройствах систем управления, цифровой технике - аналого-цифровых и цифро-аналоговых преобразователях.

Цифро-аналоговый преобразователь (ЦАП) . Цифро – аналоговые преобразователи имеют многочисленные применения для непосредственного преобразования цифровых сигналов в аналоговые и для образования обратных связей по напряжению в составе аналого-цифровых преобразователей.

ЦАП представляет собой резистивный делитель напряжения, управляемый цифровым кодом q 1 ….q n - набором логических нулей и единиц, который характеризует входную информацию. Наиболее часто применяется резистивная матрица R-2R (рис.7.11). Матрица обслуживается двунаправленными ключами Кл, число которых равно числу значащих двоичных разрядов. При наличии на всех входах q логических нулей ключи КЛ подсоединены к нулевой шине и на выходе усилителя ОУ 1 имеется нулевой потенциал.

Рисунок 7.11 – Схема ЦАП с матрицей R-2R

При приходе на первый разряд q 1 логической единицы ключ КЛ1 подключает к ОУ 1 через резистор 2R и цепочку резисторов R опорное напряжение U оп . В результате чего на выходе ОУ 1 возникает ступенька напряжения Δu вых . При приходе на вход ЦАП логической единицы более старшего разряда (большего числа), например на q 2 , на вход ОУ 1 подключается еще одна резистивная ветвь с опорным напряжением и на выход ОУ 1 добавится еще одна ступенька напряжения. Выходное напряжение нарастает ступеньками с квантом (шагом):

,

где n - число разрядов.

Разрешающая способность ЦАП определяется числом разрядов и точностью изготовления резисторов матрицы.

Аналого-цифровой преобразователь (АЦП ). АЦП применяются для преобразования аналоговых сигналов датчиков и источников сигналов в цифровую форму для последующей обработки в компьютере или микропроцессоре. Известно несколько принципов построения аналого-цифровых преобразователей- развёртывания во времени, поразрядного кодирования, следящего уравновешивания, считывания.

Схема АЦП считывания приведена на рис.7.12а. Строится АЦП на основе точного резистивного делителя напряжения R 1 …R N , выполненного из одинаковых по номиналу резисторов и компараторов K 1 …K N , где N-число уровней квантования входного сигнала U вх .

На выходах компараторов имеет место позиционный код 0 или 1, когда количество сработавших компараторов (код 1), начиная с первого, соответствует уровню измеряемой величины. Быстродействие компаратора определяется временем задержки компараторов. Для случая, изображенного на рис.7.12б, входной сигнал U вх относится ко второму уровню - сработали два первых компаратора K 1 и K 2 . Цифровой код на выходе АЦП будет 1 1 0 0. АЦП считывания может иметь неограниченное количество разрядов.

Для обработки реального сигнала используют совокупность приведенных и других элементов, схемы которых определяются конкретными задачами обработки сигналов.

Рисунок 7.12 – АЦП считывания.

Для построения электронных схем, встраиваемых в системы автоматики, требуются различные функциональные преобразователи, а также устройства, реализующие типовые нелинейности.

Функциональные преобразователи могут выполняться для реализации одной или нескольких зависимостей.

В первом случае, например, для воспроизведения только одной зависимости: экспоненты, степенной функции, тригонометрической и т.д., преобразователи называют специализированными.

Во втором случае, если преобразователи могут быть перестроены посредством изменения их параметров на воспроизведение многих зависимостей, они называются универсальными.

Преобразователи, основанные на естественных нелинейностях, используют нелинейные участки вольтамперных характеристик различных полупроводниковых приборов. Например, вольтамперные характеристики p -n переходов, зависимость фототока от освещённости, зависимость сопротивления терморезисторов от температуры, зависимость собственной частоты колебаний различных упругих резонаторов от прилагаемых к ним усилий и т.д. Логарифмические и экспоненциальные усилители с использованием нелинейностей p -n переходов хорошо разработаны и нашли широкое применение в измерительной технике.

На рис. 7.13 приведена схема устройства для возведения аналогового сигнала U вх в квадрат, основанная на использовании нелинейности фоторезисторного оптрона. Фоторезисторный оптрон представляет собой пару светодиод-фоторезистор D 1 – R 2 , выполненных интегрально. Величина сопротивления для фоторезистора оптрона обратно пропорциональна напряжению, приложенному к светодиоду. Коэффициент пропорциональности K оптрона зависит от его конструктивных особенностей и в некоторых пределах может подстраиваться резистором R 1 .

Операционный усилитель ОУ преобразует U вх в ток питания светодиода D 1 , который освещает фоторезистор R 2 , изменяя тем самым его сопротивление. Величина переходного напряжения пропорционально квадрата входного U вых ≡ U 2 вх.

Интегральная (микро)схема (ИС, ИМС, м/сх, англ. integrated circuit, IC, microcircuit), чип, ммикрочип (англ. microchip, silicon chip, chip - тонкая пластинка - первоначально термин относился к пластинке кристалла микросхемы) - микроэлектронное устройство - электронная схема произвольной сложности, изготовленная на полупроводниковом кристалле (или плёнке) и помещённая в неразборный корпус, или без такового, в случае вхождения в состав микросборки.

Полупроводниковая микросхема - все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия, оксид гафния).

Плёночная интегральная микросхема - все элементы и межэлементные соединения выполнены в виде плёнок:

Гибридная микросхема (также микросборка) - кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.

Смешанная микросхема - кроме полупроводникового кристалла содержит тонкоплёночные(толстоплёночные)пассивные элементы размещённые на поверхности кристалла.

Классификация

Степень интеграции

В СССР были предложены следующие названия микросхем в зависимости от степени интеграции, разная для цифровых и аналоговых микросхем (указано количество элементов для цифровых схем):

Малая интегральная схема (МИС) - до 100 элементов в кристалле,

Средняя интегральная схема (СИС) - до 1000 элементов в кристалле,

Большая интегральная схема (БИС) - до 10000 элементов в кристалле,

Сверхбольшая интегральная схема (СБИС) - до 1 миллиона элементов в кристалле,

Ультрабольшая интегральная схема (УБИС) - до 1 миллиарда элементов в кристалле,

Гигабольшая интегральная схема (ГБИС) - более 1 миллиарда элементов в кристалле.

В настоящее время название УБИС и ГБИС практически не используется (например, последние версии процессоров Itanium, 9300 Tukwila, содержат два миллиарда транзисторов), и все схемы с числом элементов, превышающим 10 000, относят к классу СБИС, считая УБИС его подклассом.

Технология изготовления

Полупроводниковая микросхема - все элементы и межэлементные соединения выполнены на одном полупроводниковом кристалле (например, кремния, германия, арсенида галлия, оксид гафния).

Плёночная интегральная микросхема - все элементы и межэлементные соединения выполнены в виде плёнок:

Толстоплёночная интегральная схема;

Тонкоплёночная интегральная схема.

Гибридная микросхема (также микросборка) - кроме полупроводникового кристалла содержит несколько бескорпусных диодов, транзисторов и(или) других электронных компонентов, помещённых в один корпус.

Смешанная микросхема - кроме полупроводникового кристалла содержит тонкоплёночные(толстоплёночные)пассивные элементы размещённые на поверхности кристалла.

Вид обрабатываемого сигнала

Классифицируют на:

Аналоговые;

Цифровые;

Аналого-цифровые.

Аналоговые микросхемы - входные и выходные сигналы изменяются по закону непрерывной функции в диапазоне от положительного до отрицательного напряжения питания.

Цифровые микросхемы - входные и выходные сигналы могут иметь два значения: логический ноль или логическая единица, каждому из которых соответствует определённый диапазон напряжения. Например, для микросхем типа ТТЛ при напряжении питания +5 В диапазон напряжения 0…0,4 В соответствует логическому нулю, а диапазон 2,4…5 В - логической единице; а для микросхем ЭСЛ-логики при наприяжении питания −5,2 В диапазон −0,8…−1,03 В - логической единице, а −1,6…−1,75 В - логическому нулю.

Аналого-цифровые микросхемы совмещают в себе формы цифровой и аналоговой обработки сигналов.

Типы логики

Основным элементом аналоговых микросхем являются транзисторы (биполярные или полевые). Разница в технологии изготовления транзисторов существенно влияет на характеристики микросхем. Поэтому нередко в описании микросхемы указывают технологию изготовления, чтобы подчеркнуть тем самым общую характеристику свойств и возможностей микросхемы.

В современных технологиях объединяют технологии биполярных и полевых транзисторов, чтобы добиться улучшения характеристик микросхем.

Микросхемы на униполярных (полевых) транзисторах - самые экономичные (по потреблению тока):

МОП-логика (металл-окисел-полупроводник логика) - микросхемы формируются из полевых транзисторов n-МОП или p-МОП типа;

КМОП-логика (комплементарная МОП-логика) - каждый логический элемент микросхемы состоит из пары взаимодополняющих (комплементарных) полевых транзисторов (n-МОП и p-МОП).

Микросхемы на биполярных транзисторах:

РТЛ - резисторно-транзисторная логика (устаревшая, заменена на ТТЛ);

ДТЛ - диодно-транзисторная логика (устаревшая, заменена на ТТЛ);

ТТЛ - транзисторно-транзисторная логика - микросхемы сделаны из биполярных транзисторов с многоэмиттерными транзисторами на входе;

ТТЛШ - транзисторно-транзисторная логика с диодами Шоттки - усовершенствованная ТТЛ, в которой используются биполярные транзисторы с эффектом Шоттки;

ЭСЛ - эмиттерно-связанная логика - на биполярных транзисторах, режим работы которых подобран так, чтобы они не входили в режим насыщения, - что существенно повышает быстродействие;

ИИЛ - интегрально-инжекционная логика.

КМОП и ТТЛ (ТТЛШ) технологии являются наиболее распространёнными логиками микросхем. Где необходимо экономить потребление тока, применяют КМОП-технологию, где важнее скорость и не требуется экономия потребляемой мощности применяют ТТЛ-технологию. Слабым местом КМОП-микросхем является уязвимость от статического электричества - достаточно коснуться рукой вывода микросхемы и её целостность уже не гарантируется. С развитием технологий ТТЛ и КМОП микросхемы по параметрам сближаются и, как следствие, например, серия микросхем 1564 - сделана по технологии КМОП, а функциональность и размещение в корпусе как у ТТЛ технологии.

Микросхемы, изготовленные по ЭСЛ-технологии, являются самыми быстрыми, но и наиболее энергопотребляющими, и применялись при производстве вычислительной техники в тех случаях, когда важнейшим параметром была скорость вычисления. В СССР самые производительные ЭВМ типа ЕС106х изготавливались на ЭСЛ-микросхемах. Сейчас эта технология используется редко.

Технологический процесс

При изготовлении микросхем используется метод фотолитографии (проекционной, контактной и др.), при этом схему формируют на подложке (обычно из кремния), полученной путём резки алмазными дисками монокристаллов кремния на тонкие пластины. Ввиду малости линейных размеров элементов микросхем, от использования видимого света, и даже ближнего ультрафиолета, при засветке давно отказались.

В качестве характеристики технологического процесса производства микросхем указывают минимальные контролируемые размеры топологии фотоповторителя (контактные окна в оксиде кремния, ширина затворов в транзисторах и т. д.) и, как следствие, размеры транзисторов (и других элементов) на кристалле. Этот параметр, однако, находится во взаимозависимости с рядом других производственных возможностей: чистотой получаемого кремния, характеристиками инжекторов, методами фотолитографии, методами вытравливания и напыления.

В 1970-х годах минимальный контролируемый размер составлял 2-8 мкм, в 1980-х был уменьшен до 0,5-2 мкм. Некоторые экспериментальные образцы фотолитографического оборудования рентгеновского диапазона обеспечивали минимальный размер 0,18 мкм.

В 1990-х годах, из-за нового витка «войны платформ», экспериментальные методы стали внедряться в производство и быстро совершенствоваться. В начале 1990-х процессоры (например, ранние Pentium и Pentium Pro) изготавливали по технологии 0,5-0,6 мкм (500-600 нм). Потом их уровень поднялся до 250-350 нм. Следующие процессоры (Pentium 2, K6-2+, Athlon) уже делали по технологии 180 нм.

В конце 1990-х фирма Texas Instruments создала новую ультрафиолетовую технологию с минимальным контролируемым размером около 80 нм. Но достичь её в массовом производстве не удавалось вплоть до недавнего времени. По состоянию на 2009 год технологии удалось обеспечить уровень производства вплоть до 90 нм.

Новые процессоры (сперва это был Core 2 Duo) делают по новой УФ-технологии 45 нм. Есть и другие микросхемы, давно достигшие и превысившие данный уровень (в частности, видеопроцессоры и флеш-память фирмы Samsung - 40 нм). Тем не менее дальнейшее развитие технологии вызывает всё больше трудностей. Обещания фирмы Intel по переходу на уровень 30 нм уже к 2006 году так и не сбылись.

По состоянию на 2009 год альянс ведущих разработчиков и производителей микросхем работает над тех. процессом 32 нм.

В 2010-м в розничной продаже уже появились процессоры, разработанные по 32-х нм тех. процессу.

Ожидается, что, следующим, наверное, будет тех. процесс 22 нм.

Здесь действителен Закон Мура (Мур высказал предположение, что число транзисторов на кристалле будет удваиваться каждые 24 месяца).

Контроль качества

Для контроля качества интегральных микросхем широко применяют так называемые тестовые структуры.

Назначение

Интегральная микросхема может обладать законченным, сколь угодно сложным, функционалом - вплоть до целого микрокомпьютера (однокристальный микрокомпьютер).

Аналоговые схемы

Операционные усилители.

Компараторы.

Генераторы сигналов.

Фильтры (в том числе на пьезоэффекте).

Аналоговые умножители.

Аналоговые аттенюаторы и регулируемые усилители.

Стабилизаторы источников питания: стабилизаторы напряжения и тока.

Микросхемы управления импульсных блоков питания.

Преобразователи сигналов.

Схемы синхронизации.

Различные датчики (например, температуры).

Цифровые схемы

Логические элементы

Триггеры

Счётчики

Регистры

Буферные преобразователи

Шифраторы

Дешифраторы

Цифровой компаратор

Мультиплексоры

Демультиплексоры

Сумматоры

Полусумматоры

Микроконтроллеры

(Микро)процессоры (в том числе ЦП для компьютеров)

Однокристальные микрокомпьютеры

Микросхемы и модули памяти

ПЛИС (программируемые логические интегральные схемы)

Цифровые интегральные микросхемы

Они имеют ряд преимуществ по сравнению с аналоговыми:

Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения, во втором - через него не идёт ток. В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (резистивном) состоянии.

Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка возможна при таких помехах, когда высокий уровень воспринимается как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.

Большое отличие сигналов высокого и низкого уровня и достаточно широкий интервал их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора и настройки цифровых устройств.

Аналогово-цифровые схемы

цифро-аналоговые (ЦАП) и аналогово-цифровые преобразователи (АЦП).

Цифровые вычислительные синтезаторы (ЦВС).

Трансиверы (например, преобразователь интерфейса Ethernet).

Модуляторы и демодуляторы.

Радиомодемы

Декодеры телетекста, УКВ-радио-текста

Трансиверы Fast Ethernet и оптических линий

Dial-Up модемы

Приёмники цифрового ТВ

Сенсор оптической мыши

Преобразователи напряжения питания и другие устройства на переключаемых конденсаторах

Цифровые аттенюаторы.

Схемы фазовой автоподстройки частоты (ФАПЧ) с последовательным интерфейсом.

Коммутаторы.

Генераторы и восстановители частоты тактовой синхронизации

Базовые матричные кристаллы (БМК): содержит как аналоговые, так и цифровые первичные элементы.

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия - это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса микросхем

Микросхемы выпускаются в двух конструктивных вариантах - корпусном и бескорпусном .

Бескорпусная микросхема - это полупроводниковый кристалл, предназначенный для монтажа в гибридную микросхему или микросборку (возможен непосредственный монтаж на печатную плату). Корпус микросхемы - это часть конструкции микросхемы, предназначенная для защиты от внешних воздействий и для соединения с внешними электрическими цепями посредством выводов. Корпуса стандартизованы для упрощения технологического процесса изготовления изделий из разных микросхем. Число стандартных корпусов исчисляется сотнями.

В российских корпусах расстояние между выводами (шаг) измеряется в миллиметрах и наиболее часто это 2,5 мм и 1,25 мм. У импортных микросхем шаг измеряют в дюймах, используя величину 1/10 или 1/20 дюйма, что соответствует 2,54 и 1,28 мм. В корпусах до 16 выводов эта разница не значительна, а при больших размерах (20 и более выводов) соответствующие корпуса уже достаточно конструктивно несовместимы: для штыревых выводов - обламывание выводов при монтаже, для планарных - спайка соседних.

В современных импортных корпусах для поверхностного монтажа применяют и метрические размеры: 0,8 мм; 0,65 мм и другие.

Пример корпусной микросхемы:

Назначение выводов микросхемы К174УН7:
1 - питание (+ Un);
4 - вольтодобавка, питание (+Un);
5-коррекция;
6-обратная связь;
7-фильтр;
8-вход;
9- общий (- Un);
10-эмиттер выходного каскада;
12-выход.

Специфические названия микросхем

Фирма Intel первой изготовила микросхему, которая выполняла функции микропроцессора (англ. microproccessor) - Intel 4004. На базе усовершенствованных микропроцессоров 8088 и 8086 фирма IBM выпустила свои известные персональные компьютеры).

Микропроцессор формирует ядро вычислительной машины, дополнительные функции, типа связи с периферией выполнялись с помощью специально разработанных наборов микросхем (чипсет). Для первых ЭВМ число микросхем в наборах исчислялось десятками и сотнями, в современных системах это набор из двух-трёх микросхем. В последнее время наблюдаются тенденции постепенного переноса функций чипсета (контроллер памяти, контроллер шины PCI Express) в процессор.

Микропроцессоры со встроенными ОЗУ и ПЗУ, контроллерами памяти и ввода-вывода, а также другими дополнительными функциями называют микроконтроллерами. Примерами могут служить современные процессоры Intel со встроенными контроллерами ОП, видео и т.д.

Перемножение аналоговых сигналов, как и усиление, является одной из основных операций при обработке электрических сигналов. Для осуществления операции перемножения были разработаны специализированные ИМС - перемножители аналоговых сигналов (ПАС). ПАС должны обеспечивать точное перемножение в широком динамическом диапазоне входных сигналов и в возможно более широком частотном диапазоне. Если ПАС позволяют перемножать сигналы любых полярностей, то их называют четырехквадрантными, если один из сигналов может быть только одной полярности, двухквадрантными. Перемножители, умножающие однополярные сигналы, называются одноквадрантными. Известны разнообразные одно- и двухквадрантные ПАС на основе элементов с управляемым сопротивлением, переменной крутизной, использованием логарифматоров и антилогарифматоров. Например, регулятор с изменением режима работы элементов, изображенный на рисунке 7.7в, можно использовать в качестве перемножителя, если на дифференциальный вход подать напряжение u x , а вместо E упр подать u y . Под воздействием u y меняется крутизна передаточной характеристики транзисторов, на базы которых подается второе перемножаемое напряжение u x . Можно показать, что выходное напряжение U вых , снимаемое между коллекторами транзисторов ДК, при R к 1 =R к 2 =R к определяется по формуле


Коэффициент усиления по току БТ, включенного по схеме с ОБ; ? T - температурный потенциал, ? T =25,6 мВ.

Если u x <<? T , то выражение для U вых можно упростить:


Недостатком рассмотренного простейшего перемножителя на одиночном ДК является весьма малый динамический диапазон входных сигналов, в котором обеспечивается приемлемая точность перемножения. Например, уже при u x =0,1? T погрешность перемножения достигает 10%.

Более широкий динамический диапазон перемножаемых напряжений при меньшей погрешности обеспечивают логарифмические перемножители построенные по принципу "логарифмирование-антилогарифмирование". Схема подобного ПАС приведена на рисунке 7.23.

Рисунок 7.23. Логарифмический умножитель

Здесь ОУ DA 1 и DA 2 производят логарифмирование входных напряжений, а DA 3 используется в качестве сумматора, на выходе которого напряжение равно:

U 0 = k 1 (lnu x + lnu y ) = k 2 lnu x u y .

С помощью ОУ DA 4 производят антилогарифмирование

U вых = k 3 antilnU 0 = k 3 u x u y

Следует заметить, что в данных выражениях используются напряжения, нормированные относительно одного вольта. Коэффициенты пропорциональности k 1 , k 2 , k 3 определяются резистивными элементами, включенными в цепи ООС используемых ОУ. Большим недостатком подобных ПАС является сильная зависимость диапазона рабочих частот от амплитуд входных сигналов. Так, если при входном напряжении 10В верхняя частота перемножаемых напряжений может составлять 100кГц, то при входном напряжении 1В полоса рабочих частот сужается до 10кГц .

Принцип логарифмирования и антилогарифмирования используется в наиболее распространенном способе построения четырехквадрантных ПАС с нормировкой токов, которые обладают наилучшей совокупностью таких параметров, как линейность, широкополосность, температурная стабильность. Обычно они имеют дифференциальные входы, что расширяет их функциональные возможности. Перемножители с нормировкой токов выполняются по интегральной полупроводниковой технологии.

Упрощенная принципиальная схема ИМС ПАС с нормировкой токов типа 525ПС1 приведена на рисунке 7.24.

Устройство содержит сложный дифференциальный каскад на транзисторах VT 7 , …, VT 10 . Перекрестные связи коллекторов этих транзисторов обеспечивают инверсию сигналов, необходимую для четырехквадрантного умножения. Входные каскады на транзисторах VT 3 , …, VT 6 и VT 11 , …, VT 14 преобразуют входные напряжения u x и u y в токи. С помощью транзисторов в диодном включении VT 1 и VT 2 происходит логарифмирование токового сигнала по входу Y. Антилогарифмирование сигнала Y и умножение его на сигнал X осуществляется усилителем на транзисторах VT 7 , …, VT 10 .


Рисунок 7.24. Упрощённая схема ИМС перемножителя 525ПС1

В рассматриваемом устройстве связь между входными и выходными сигналами может быть представлена в виде отношения токов. Выходной ток перемножителя определяется соотношением


где I X и I Y - токи, протекающие через резисторы R X и R Y ; I pX и I pY - рабочие токи в каналах X и Y.

Выходное напряжение, снимаемое с одного из сопротивлений нагрузки, равно


Масштабный коэффициент.

Все приведенные на рисунке 7.24 резисторы, кроме R 1 и R 2 , являются внешними. Их выбор зависит от конкретных требований к ПАС.

Для получения на выходе ПАС нулевого напряжения при равных нулю входных напряжениях предусмотрена подстройка с помощью переменных резисторов R 4 и R 5 . Если перемножитель работает только при одной полярности одного из входных сигналов, то он называется смещенным. Для превращения четырехквадрантного ПАС в смещенный достаточно на один из входов подать такое постоянное смещение, при котором сигналы на этом входе всегда оказываются меньше напряжения смещения.


"Справочник" - информация по различным электронным компонентам : транзисторам , микросхемам , трансформаторам , конденсаторам , светодиодам и т.д. Информация содержит все, необходимые для подбора компонентов и проведения инженерных расчетов, параметры, а также цоколевку корпусов, типовые схемы включения и рекомендации по использованию радиоэлементов .

Трудно переоценить значение перепрограммируемых логических интегральных схем (ПЛИС) при синтезе логических систем. Комплексное развитие элементной базы и систем автоматизированного проектирования позволяет реализовывать сложные логические системы в невиданно короткие сроки и с минимальными материальными затратами. Поэтому вполне объяснимо стремление добиться подобных результатов в области проектирования и производства аналоговых систем. Однако множество предпринятых в этом направлении попыток пока не принесли ожидаемых результатов, а программируемые аналоговые ИС (ПАИС) и матричные аналоговые БИС (МАБИС) так и не стали универсальными.

ПРОБЛЕМЫ ПРОЕКТИРОВАНИЯ ПРОГРАММИРУЕМЫХ АНАЛОГОВЫХ БИС

Стремительный прогресс в области проектирования логических систем на ПЛИС был предопределен тем, что все логические системы основываются на четко проработанном математическом аппарате алгебры Буля. Эта теория позволяет доказать, что построение произвольной логической функции возможно путем упорядоченной композиции лишь одного элементарного оператора - логического И-НЕ (или ИЛИ-НЕ). То есть любую строго логическую систему можно проектировать из элементов всего одного типа, например И-НЕ.

Совсем иная ситуация в области проектирования (синтеза) и анализа (декомпозиции) принципиальных схем аналоговых систем. В аналоговой электронике до сих пор нет единого общепризнанного математического аппарата, который позволил бы решать задачи анализа и синтеза с единых методологических позиций. Причины этого явления следует искать в истории развития аналоговой электроники.

На ранних этапах схемотехника аналоговых устройств развивалась в соответствии с концепциями функционально-узлового метода, основной идеей которого было деление сложных принципиальных схем на узлы. Узел состоит из группы элементов и выполняет вполне определенную функцию. При объединении узлы образуют блоки, платы, шкафы, механизмы - т.е. какие-то единые конструкции, которые называют устройствами. Объединение устройств образует систему. Функционально-узловой метод предполагал, что элементарными составляющими систем должны быть узлы, основная задача которых - выполнение вполне определенной функции.

Именно поэтому за критерий классификации узлов была принята функциональность, то есть факт выполнения узлом какой-то функции. Однако по мере развития электроники выделенных и обособленных функций (следовательно - и узлов) оказалось чрезвычайно много. Исчезла всякая возможность их минимизации и унификации, что необходимо для синтеза сложных систем. Именно поэтому тормозилось и продолжает тормозиться развитие матричных аналоговых БИС (МАБИС) и перепрограммируемых аналоговых интегральных схем (ПАИС).

Состояние дел в области программируемых аналоговых схем можно проследить, анализируя разработки ведущих российских и иностранных компаний. Так, специалисты ОАО "НИИТТ и завод "Ангстрем" сосредоточили усилия на разработке и производстве аналого-цифровых БМК (базовых матричных кристаллов) типа "Руль" Н5515ХТ1, Н5515ХТ101, предназначенных для систем сбора данных, контроля и управления, для медицинской техники и контрольно-измерительной аппаратуры .

Конструкция этих БМК включает аналоговую и цифровую матрицу. Цифровая матрица содержит 115 цифровых базовых ячеек (230 вентилей 2И-НЕ), которые расположены пятью рядами по 23 ячейки в ряд. Аналоговая матрица объединяет 18 аналоговых базовых ячеек, размещенных двумя рядами по 9 ячеек. Между рядами аналоговых ячеек располагаются два ряда конденсаторов (номиналом 17,8 пФ) и два ряда диффузионных резисторов (по 24,8 кОм). Между аналоговой и цифровой частью расположен ряд 3,2-кОм резисторов.

В БМК предусмотрено два типа аналоговых ячеек (А и Б). Ячейки типа А состоят из 12 прп- и четырех рлр-транзисторов с изолированным коллектором и 38 многоотводных диффузионных резисторов. В ячейках типа Б четыре лрл-транзистора заменены двумя р-МОП-транзисторами. Периферийные ячейки типа А и Б содержат по четыре мощных лрл-транзистора (в ячейках типа Б - с изолированным коллектором) и по два биполярных транзистора.

Цифровые базовые ячейки представлены тремя типами - из четырех л-МОП-транзисторов, из четырех р-МОП-транзисторов и из комплиментарной пары биполярных транзисторов. Кроме того, на периферии кристалла расположены мощные цифровые ячейки, которые содержат по четыре мощных л-МОП- и р-МОП-транзисто-ра, а также по два лрл-транзистора, включенных по схеме Дарлингтона.

Для БМК разработаны библиотеки стандартных аналоговых и цифровых элементов, которые существенно облегчают и ускоряют процесс проектирования устройств на базе БМК. Эти и подобные им БМК содержат несоединенные между собой наборы электрорадиоэлементов (ЭРЭ), из которых может быть получен ряд функциональных узлов, оговоренных в библиотеке. Основной недостаток таких микросхем - весьма узкая область применения, ограниченная конкретными значениями номиналов и других характеристик ЭРЭ в данном наборе. Возможности функциональных узлов, разработанных и рекомендованных для данного набора, приводятся в сопровождающей микросхему библиотеке.

Рис. 1. Структура ispPAC-10

С 2000 года фирма Lattice Semiconductor выпускает программируемые аналоговые интегральные схемы (ПАИС) семейства ispPAC (In-System Programmable Analog Circuit) с программированием в системе, т.е. без извлечения из печатной платы . К середине 2000 года производились три представителя этого семейства: ispPAC-Ю (рис.1), ispPAC-20 (рис.2) и ispPAC-80. Они интегрируют до 60 активных и пассивных элементов, которые конфигурируются, моделируются и программируются с помощью пакета PAC-Designer.

ПАИС семейства ispPAC содержат:

Схемы последовательного интерфейса, регистры и элементы электрически репрограммируемой энергонезависимой памяти (EEPROM), обеспечивающие конфигурирование матрицы;
программируемые аналоговые ячейки (PACcells) и состоящие из них программируемые аналоговые блоки (PACblocks);
программируемые элементы для межсоединений (ARP - Analog Routing Pool).

Заложенная в эту серию архитектура основывается на базовых ячейках, содержащих: инструментальный усилитель (ИУ); выходной усилитель (ВУ), реализованный по схеме сумматора/интегратора; источник опорного напряжения 2,5 В (ИОН); 8-разрядный ЦАП с выходом по напряжению и сдвоенный компаратор (КП). Аналоговые входы и выходы ячеек (кроме ИОН) для повышения динамического диапазона обрабатываемых сигналов выполнены по дифференциальной схеме. Два ИУ и один ВУ образуют макроячейку, называемую РАС-блоком, в котором выходы ИУ соединены с суммирующими входами ВУ. Микросхема ispPAC-10 включает четыре РАС-блока, a ispPAC-20 - два. В состав ispPAC-20 также входят ячейки ЦАП и компараторов. В ячейке программируются коэффициент усиления ИУ в диапазоне от -10 до +10 с шагом 1, а в цепи обратной связи ВУ - величина емкости конденсатора (128 возможных значений) и включение/выключение сопротивления.

Ряд изготовителей ИС применяют для программирования аналоговых функций технологию "переключаемых конденсаторов", предполагающую изменение емкости частотно-задающих цепей посредством электронного ключа, переключающегося по условию.

Рис. 2. Структура ispPAC-20

Подход компании Lattice основан на использовании схем с постоянными во времени характеристиками, которые могут быть изменены в процессе переконфигурования системы без выключения питания. Это улучшение существенно, так как избавляет от дополнительных обработок сигнала, необходимых в первом методе.

Средства внутренней разводки (Analog Routing Pool) позволяют соединять друг с другом входные контакты микросхемы, входы и выходы макроячеек, выход ЦАП и входы компараторов. Объединяя несколько макроячеек, можно строить схемы перестраиваемых активных фильтров в диапазоне частот от 10 до 100 кГц, основанных на использовании звена интегратора.
Следует заметить, что ispPAC фирмы Lattice в наибольшей степени приближены к ПАИС. Единственный их недостаток - отсутствует система универсальных базовых элементов, которая позволяла бы проектировать не только перестраиваемые активные фильтры, а достаточно широкое множество аналоговых систем. Именно это обстоятельство мешает ispPAC фирмы Lattice Semiconductor стать аналогом ПЛИС таких фирм, как Altera и Xilinx.

В целом, анализируя ситуацию в области разработок и практических реализаций аналоговых микросхем, можно сделать ряд обобщений:

Основная масса промышленно реализованных аналоговых микросхем по степени интеграции не может быть отнесена к БИСам;
аналоговые БИС и БМК предназначаются для проектирования устройств определенного класса, т.е. они не универсальны;
при проектировании больших аналоговых систем главенствующим остается функционально-узловой метод (специализированные комплекты ИС, например для телевизионных приемников).

ЕДИНЫЙ БАЗИС ПРОЕКТИРОВАНИЯ ПЛИС И МАБИС

Однако задача разработки единого схемотехнического базиса проектирования аналоговых систем все же имеет решение, что мы попробуем теоретически обосновать и показать возможные направления практической реализации изложенных идей.

Прежде всего, следует выбрать математическую модель большой аналоговой электронной системы, которая позволила бы выделить малочисленную группу базисных элементов. В области анализа и синтеза электронных схем альтернатив математическому аппарату систем линейных дифференциальных уравнений практически нет, что было признано еще в шестидесятых годах прошлого столетия . Отметим, однако, что идея практического массового использования данной методологии и сегодня еще не овладела умами всех специалистов.

Система дифференциальных уравнений состоит из элементов, их связей и характеризуется определенной структурой. Элементный базис дифференциальных уравнений был исследован в первой половине прошлого века в рамках научной дисциплины "автоматика". В данной области проявилось такое достоинство дифференциальных уравнений, как унификация: их форма не зависит от описываемой модели процесса. Однако в стандартной форме записи дифференциального уравнения нет никакой наглядной информации о характере взаимосвязей в исследуемой системе. Поэтому методы наглядного отображения структуры систем дифференциальных уравнений в виде различного рода схем разрабатывались на всем протяжении развития теории автоматического управления.

К концу 60-х годов двадцатого века вполне сложилась современная точка зрения на структурную организацию моделей динамических систем . Формирование математической модели системы начинается с ее разбиения на звенья и последующего их описания - либо аналитически в виде уравнений, связывающих входные и выходные величины звена; либо графически в виде мнемосхем с характеристиками. По уравнениям или характеристикам отдельных звеньев составляются уравнения или характеристики системы в целом.

Звенья динамических систем, выделенные в качестве типовых

Наименование звена

Уравнение звена y(t)=f(u(t))

Передаточная функция W(s)=y(s)/u(s)

Элементарные составляющие

Пропорциональное
Интегрирующее

dy(t)/dt = ku(t); py = ku

Дифференцирующее

y(t)=k·du(t)/dt; y = kpu

Апериодическое 1 -го порядка


Форсирующее 1 -го порядка


Интегрирующее инерционное

W(s) = k/


Дифференцирующее инерционное

W(s) = ks/(Ts+1)


Изодромное

W(s) = k(Ts+1)/s


Колебательное, консервативное, апериодическое 2-го порядка

(T 2 p 2 +2ξTp+1)y = ku

W(s)=k/(T 2 p2+2ξTp+1)


Заметим, что если для функциональной схемы система разбивается на звенья исходя из выполняемых ими функций, то для математического описания систему фрагментируют исходя из удобства получения описания. Поэтому звенья должны быть как можно более простые (мелкие). С другой стороны, при разбиении системы на звенья математическое описание каждого звена должно быть составлено без учета связей его с другими звеньями. Это возможно, если звенья обладают направленностью действия - т.е. передают воздействие только в одном направлении, с входа на выход. Тогда изменение состояния какого-либо звена не влияет на состояние предшествующего звена.

Если условие направленности действия звеньев выполнено, математическое описание всей системы можно получить в виде системы независимых уравнений отдельных звеньев, дополненных уравнениями связи между ними. Наиболее часто встречающимися (типовыми) считаются такие звенья, как апериодическое, колебательное, интегрирующее, дифференцирующее, звено постоянного запаздывания .

Проблема элементарных звеньев в моделях вида системы дифференциальных уравнений исследовалась рядом авторов . Анализ показывает , что их позиции в основном сводятся к констатации факта существования типовых звеньев и исследования их роли в процессе образования более сложных структур. Отбор в группу типовых звеньев производится произвольно, без каких-либо критериев. В перечни типовых без объяснения и обоснования включаются разные звенья, а для обозначения типовых звеньев в равной мере используются также термины "простейшие" и "элементарные" (см. таблицу). Между тем, исследование многочисленных "типовых" звеньев динамических систем методами структурных матриц показывает, что лишь три звена - пропорциональное, интегрирующее и дифференцирующее - в своих структурных матрицах не содержат матричных циклов. Поэтому только их можно называть элементарными. Все остальные звенья строятся путем комбинации элементарных звеньев.

Так, если пропорциональное звено с передаточной функцией W B (s) = k B и дифференцирующее звено с передаточной функцией W A (s) = k A s соединить по схеме отрицательной обратной связи (рис.3), то эквивалентная передаточная функция

Таким образом, результат с точностью до значений постоянных времени совпадает с передаточной функцией апериодического звена первого порядка. Значит, это звено можно получить соединив пропорциональное и дифференцирующее звенья по схеме с отрицательной обратной связью и, следовательно, оно не может считаться элементарным.

Рис.3. Эквивалентная, схема апериодического звена

Точно так же можно построить и остальные звенья, включенные в таблицу. Особо следует остановиться на передаточной функции колебательного звена (T 2 p 2 + 2ξTp + 1)y = ku. Так, если соединить последовательно два апериодических звена с передаточными функциями отличающимися лишь постоянными времени, то эквивалентная передаточная функция примет вид

Таким образом, результат с точностью до значений постоянных времени совпадает с передаточной функцией исследуемого звена. Следовательно, колебательное, консервативное и апериодическое звенья 2-го порядка можно получить путем последовательного соединения звеньев первого порядка. Значит, они не могут считаться элементарными, хотя называть их типовыми в принципе допустимо.

Анализ результатов, приведенных в последнем столбце таблицы, позволяет сделать вывод о том, что такие звенья, как апериодическое, изодромное, форсирующее, дифференцирующее инерционное и интегрирующее инерционное, могут быть получены соединением элементарных звеньев. Чтобы доказать, что передаточные функции и остальных типовых звеньев могут быть получены путем соединения элементарных звеньев, следовало бы проанализировать соединения по три, четыре и так далее звеньев по типовым схемам соединения. Такой же результат можно получить, если рассмотреть соединения элементарных звеньев с типовыми звеньями первого порядка. Часть такого исследования уже проделана, его результаты приведены в работе .

Таким образом, доказано, что посредством соединения элементарных звеньев достаточно просто получить все передаточные функции так называемых типовых динамических звеньев. Следовательно, произвольные динамические системы могут быть синтезированы с помощью операторов размножения и соединения всего трех элементарных звеньев: пропорционального, дифференцирующего и интегрирующего. Этот вывод имеет фундаментальное значение, так как он определяет элементный базис, необходимый для построения линейных динамических систем любого порядка, в том числе - радиоэлектронных схем. И если динамические системы предполагается строить из ограниченной номенклатуры динамических звеньев, как в случае МАБИС и ПАИС, то сделанный вывод важен особенно.

Рис.4. Простые схемные решения элементарных узлов: а) много-входовой сумматор, б) дифференциальный усилитель (пропорциональное звено), в) дифференциатор (дифференцирующее звено), г) интегратор (интегрирующее звено)

Появляется возможность синтеза произвольных аналоговых устройств всего из пяти функциональных узлов - мультиплексора, сумматора, умножителя, интегратора и дифференциатора (рис.4)! Заметим, что приведенные на рис. 4 схемы не следует воспринимать как реально отработанные схемотехнические решения, а только лишь как обоснование возможности замены элементарных звеньев на функциональной схеме базовыми радиоэлектронными элементами. Заменяя элементарные звенья функциональных схем их аппаратными аналогами, можно проектировать аналоговые устройства с заданными характеристиками.

ПРИМЕР СИНТЕЗА АНАЛОГОВОГО УСТРОЙСТВА

Рассмотрим весьма простой пример синтеза принципиальной схемы аналогового устройства по модели, заданной системой дифференциальных уравнений в форме преобразований Лапласа вида: x 0 = g, x 1 = x 0 - 2x 2 /s, x 2 = 10x 1 /s, x 3 = x 2 - 10x 4 /s, x 4 = 500x 3 /s.

Рис.5. Структурная схема синтезируемого устройства (поэтапно)

Из результатов моделирования (рис.6) синтезированной схемы видно, что при заданных параметрах она представляет собой два последовательно соединенных генератора. То есть весьма простое устройство, состоящее всего из четырех интегрирующих звеньев, выполняет сравнительно сложную функцию модуляции низкочастотного колебания высокочастотным.
Отметим, что при проектировании и производстве МАБИС и ПА-ИС совершенно не обязательно использовать аппаратные аналоги элементарных звеньев, выполненные на операционных усилителях, как на рис.4, хотя в этом базисе они лучше всего проработаны . Наиболее перспективна реализация аппаратных аналогов элементарных звеньев на оптоэлектронных компонентах, хотя возможны и любые другие варианты.

Рис.6. Осциллограмма синтезированного устройства

УНИВЕРСАЛЬНЫЕ МАБИС И ПАИС - ЭТО ВОЗМОЖНО

Таким образом, можно выделить пять элементарных (простейших) компонентов любой РЭА, соответствующих основным операторам систем дифференциальных уравнений: умножения, дифференцирования, интегрирования, сложения и размножения (мультиплексирования). Методика проектирования аналоговых электронных устройств предполагает :

Использование в качестве исходных данных для проектирования математической модели в виде системы из n дифференциальных уравнений первого порядка (или дифференциального уравнения л-го порядка;
построение структурной матрицы проектируемого устройства и нахождение матричных циклов;
восстановление структурной схемы проектируемого устройства;
преобразование структурной схемы в функциональную путем замены типовых звеньев совокупностью элементарных звеньев;
преобразование функциональной схемы проектируемого устройства в схему электрическую принципиальную путем замены элементарных звеньев эквивалентными им аппаратными базисными элементами (возможно, применение современных САПР позволит избежать этот этап, синтезируя топологию непосредственно из функционального описания);
разработка топологии проектируемого устройства.

Предлагаемый подход обладает рядом решающих преимуществ. Так, функциональная схема проектируемого устройства синтезируется из исходной системы дифференциальных уравнений путем стандартных матричных преобразований, которые могут быть упорядочены и преобразованы в алгоритм для автоматических вычислений. Схема электрическая принципиальная синтезируется из функциональной схемы простой заменой элементарных динамических звеньев эквивалентными им базисными элементами. Также существенно может упроститься моделирование устройства средствами САПР.

Таким образом, поскольку множество элементарных звеньев не многочисленно, появляется реальная возможность проектирования универсальных МАБИС и ПАИС. Что, в свою очередь, значительно упрощает проектирование аналоговых и цифроаналоговых устройств и открывает заманчивые перспективы дальнейшего развития электроники в целом.

ЛИТЕРАТУРА

1. Аленин С., Иванов В., Полевиков В., Трудновская Е. Реализация специализированных аналого-цифровых устройств на базе БИК МОП БМКтипа Н5515ХТ1. - ChipNews, 2000, №2.
2. Курбатов. А. Программируемые аналоговые интегральные схемы. Жизнь продолжается. - Компоненты и технологии, 2000, №2.
3. Петросянц К., Суворов А., Хрусталев И. Программируемые аналоговые матрицы фирмы Lattice Semiconductor. - ChipNews, 2001, №1.
4. Ку Е.С., Сорер Р.А. Применение метода переменных, характеризующих состояние к анализу цепей. - ТИИЭР, 1965, №7.
5. Ильин В.Н. Машинное проектирование электронных схем. - М.: Энергия, 1972.
6. Юревич Е.И. Теория автоматического управления. - Л.: Энергия, 1975.
7. Куропаткин П.В. Теория автоматического управления. - М.: Высшая школа, 1973.
8. Воронов А.А., Титов В.К., Новогранов Б.Н. Основы теории автоматического регулирования и управления. - М.: Высшая школа, 1977.
9. Воронов А.А. Теория автоматического управления. Часть 1. Теория линейных систем автоматического управления. - М.: Высшая школа, 1977.
10. Мишин Г.Т. Естественно-научные основания аналоговой микроэлектроники. - М.: МИЭМ, 2003.
11. Шатихин Л.Г. Структурные матрицы и их применение для исследования систем. - М.: Машиностроение, 1974.
12. Шатихин Л.Г. Структурные матрицы и их применение для исследования систем. - М.: Машиностроение, 1991.
13. Аналоговые интегральные схемы. /Под ред. Дж.Коннели. -М.: Мир, 1977.
14. Дж. Ленк. Электронные схемы. Практическое руководство. - М.: Мир, 1985.
15. Нестеренко Б.К. Интегральные операционные усилители. - М.: Энергоиздат, 1982.
16. Хоровиц П., Хилл У. Искусство схемотехники Т. 1. - М.: Мир, 1983.


Дата публикации: 30.03.2005

Мнения читателей
  • Crysty / 18.06.2012 - 04:43
    Knowelgde wants to be free, just like these articles!